|
|
Study on Fault Diagnosis Method for Rotating Machinery Based on Adaptive Stochastic Resonance and AMD |
SHI Pei-ming1,SU Cui-jiao1,ZHAO Na1,HAN Dong-ying2,TIAN Guang-jun1 |
1. Institute of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
2. Institute of of Vehicles and Energy, Yanshan University, Qinhuangdao, Hebei 066004, China |
|
|
Abstract Aiming at the problem of fault diagnosis for rotating machinery with very low signal-to-noise ratio under strong noise background, a fault diagnosis method for rotating machinery based on AMD and stochastic resonance is proposed. If the frequency components of the signal are known, signal with different frequency components can be decomposed into single frequency signal using the AMD method, especially to decompose a signal with closely spaced frequency components. For the fault feature frequency can be predicted in rotating machinery fault diagnosis, AMD method is used to extract fault feature frequency signal in mechanical vibration signal and add low intensity noise to the signal firstly. Then, the signal with noise is put into the optimal stochastic resonance system and denoising and enhancing the signal. Finally the spectrum of the signal is obtained, if the frequency spectrum contains the fault feature frequency, it shows that the faults exist in mechanical vibration signal. Through the extraction of the rolling bearing fault signal feature proved that the method has a good effect.
|
Received: 01 September 2015
Published: 28 December 2016
|
|
Corresponding Authors:
pei-ming shi
E-mail: spm@ysu.edu.cn
|
|
|
|
[1]刘彬, 蒋金水, 于伟凯. EMD相关度去噪及其在轧机信号处理中的应用[J]. 计量学报, 2009, 30(1): 73-77.
[2]谢平, 王欢, 杜义浩. 基于EMD和Wigner-Ville分布的机械故障诊断方法研究[J]. 计量学报, 2010, 31(5): 390-394.
[3]Chen G, Wang Z. A signal decomposition theorem with Hilbert transform and its application to narrowband time series with closely spaced frequency components[J]. Mechanical Systems and Signal Processing, 2012, 28: 258-279.
[4]李苗, 任伟新, 胡异丁,等. 基于解析模态分解法的桥梁动态应变监测数据温度影响的分离[J]. 振动与冲击, 2012, 31(21): 6-10.
[5]Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance[J]. Journal of Physics A: mathematical and General, 1981, 14(11): 453-457.
[6]明安波, 褚福磊, 张炜. 滚动轴承故障特征提取的频谱自相关方法[J]. 机械工程学报, 2012, 48(19): 65-71.
[7]崔玲丽, 康晨晖, 胥永刚, 等. 滚动轴承早期冲击性故障特征提取的综合算法研究[J]. 仪器仪表学报, 2010, 31 (11): 2422-2427.
[8]Feldman M. A signal decomposition or lowpass filtering with Hilbert transform [J]. Mechanical Systems and Signal Processing, 2011, 25(8): 3205-3208.
[9]时培明, 苏翠娇, 韩东颖. 基于AMD-HHT的非平稳信号紧密间隔频率检测[J]. 仪器仪表学报, 2014, 35(12):2817-2825.
[10]林敏, 孟莹. 双稳系统的频率耦合与随机共振机理[J]. 物理学报, 2010, 59(6):3627-3632.
[11]石鹏, 冷永刚, 范胜波,等. 双稳系统处理微弱冲击信号的研究[J]. 振动与冲击, 2012, 31(6):150-154.
[12]王太勇, 胡世广, 冷永刚,等. 基于变尺度随机共振的油管漏磁信号检测[J]. 计量学报, 2008, 29(1):69-72.
[13]李一博, 张博林, 刘自鑫,等. 基于量子粒子群算法的自适应随机共振方法研究[J]. 物理学报, 2014, 32(19):125-131.
[14]焦尚彬, 李鹏华, 张青,等. 采用知识的粒子群算 法的多频微弱信号自适应随机共振检测方法[J]. 机械工程学报, 2014, 50(12):1-10. |
|
|
|