|
|
The Miniaturization of the Data Acquisition System for Mercury Ion Microwave Frequency Standard |
WANG Man1,2,3,4,CHEN Yi-he1,2,3,LIU Hao1,2,3,HE Yue-hong1,2,3,4,YANG Zhi-hui1,2,3,4,SHE Lei1,2,3,LI Jiao-mei1,2,3 |
1. Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
2. Key Laboratory of Atomic Frequency Standard, Chinese Academy of Sciences, Wuhan , Hubei 430071, China
3.State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences, Wuhan, Hubei 430071, China
4.Graduate University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract In order to achieve the miniaturization of electronic servo system, a data acquisition system, based on FPGA(Field-Programmable Gate Array) was developed. Broadband, high-speed, low-power microchips were introduced into circuits to process the weak fluorescence spectrum signal, then the FPGA high-speed photon counting method was applied to signal acquisition. It can replace the traditional computer software LABVIEW combined with commercial instrument data acquisition system. So efficient data acquisition were realized in physical ion microwave frequency standard system.
|
Received: 02 June 2015
Published: 14 October 2016
|
|
|
|
|
[1]邵辉丽. 线型阱微波频标缓冲气体渗透实验研究和高频无极谱灯的研制[D].武汉:中国科学院研究生院(武汉物理与数学研究所),2004.
[2]Kivist H, Rossi M, Jones P, et al. Advanced time-stamped total data acquisition control front-end for MeV ion beam microscopy and proton beam writing[J]. Microelectronic Engineering, 2013, 102: 9-11.
[3]韩伟, 沈昱明. 双计时脉冲插值计数器的设计和实验[J]. 计量学报, 2014, 35(z1): 130-134.
[4]Spence T G, Calzada M E, Gardner H M, et al. Real-time FPGA data collection of pulsed-laser cavity ringdownsignals[J]. Optics express, 2012, 20(8): 8804-8814.
[5]杨燕,申晋,成艳亭. 光子相关系统中的计数器设计[J]. 山东理工大学学报(自然科学版),2008,22(2):28-30.
[6]李旭,綦星光,李庆华. 一种基于FPGA的改进型光子计数器[J]. 山东轻工业学院学报(自然科学版),2012,(4):1-3.
[7]Ihara Y, Ishii T, Nagai T, et al. Development of photon counting system with FPGA for precise measurement of radiophotoluminescence[J]. Radiation Measurements, 2011, 46(12): 1574-1577.
[8]Fürst M, Weier H, Nauerth S, et al. High speed optical quantum random number generation[J]. Optics express, 2010, 18(12): 13029-13037.
[9]Phoonthong P, Mizuno M, Kido K, et al. Determination of the absolute microwave frequency of laser-cooled 171Yb+[J]. Applied Physics B, 2014, 117(2): 673-680.
[10]柳浩,杨玉娜,李交美,等. 一种单光子计数放大/甄别电路:CN202160162U[P]. 2012-03-07.
[11]Ikeda T, Yanagi S. Disk storage apparatus including a single power supply hysteresis comparator having a symmetrical characteristic: U.S. Patent 5,351,222[P]. 1994-9-27.
[12]Kinoshita S, Ohta H, Kushida T. Subnanosecond fluorescence-lifetime measuring system using single photon counting method with mode-locked laser excitation[J]. Review of Scientific Instruments, 1981, 52(4): 572-575.
[13]丁波. 紧凑型光子计数器的电子线路设计[D]. 湖北武汉: 华中科技大学, 2013.
[14]张瑜,张升伟. 基于FPGA的微波辐射计数控系统设计与实现[J]. 电子技术应用,2009,12:42-46.
[15]Yu S Q, Yi L L, Chen W H, et al. Implementation of a Multi-channel UART Controller Based on FIFO Technique and FPGA[C]//Industrial Electronics and Applications, 2007. ICIEA 2007. 2nd IEEE Conference on, Haebin, 2007: 2633-2638. |
|
|
|