|
|
The Round-off Uncertainty Evaluation of Fast Fourier Transform |
JING Xue-dong,CHEN Zhi,ZHANG Zhi-hui,HUANG Wei-lin |
School of Mechanical Engineering of Shanghai Institute of Technology, Shanghai 201418, China |
|
|
Abstract Round-off uncertainty is an important source of the uncertainty evaluation for fast Fourier transform algorithm. The fast Fourier transform algorithm expression is transformed into vector matrix, then the matrix will decompose into sparse matrix. So the signal flow graph will determine and round-off uncertainty in every level of the transmission form will be obtained. Assuming round-off uncertainty distribution as uniform distribution, then the round-off uncertainty of radix-2FFT by type B evaluation of GUM can be evaluated, finally the values of round-off uncertainty after passing through the algorithm will be obtained. Based on this, a unified method for the evaluation of the uncertainty of FFT can be established.
|
Received: 28 June 2015
Published: 10 December 2015
|
|
|
|
|
[1]Rao K R, Kim D N.Fast Fourier Transform:Algorithms And Applications [M] .北京:机械工业出版社,2012,1-99.
[2]ISO/IEC.GUIDE 98-3. Uncertainty of measurement—Part 3: Guide to the expression of uncertainty in Measurement (GUM:1995)[S].2008.
[3]Jing X D. Evaluation of measurement uncertainties of virtual instruments[J]. International Journal of Advanced Manufacturing Technology(UK), 2006, 27(11): 1202-1210.
[4]荆学东.基于虚拟仪器的纳米颗粒复合电刷镀工艺过程自动化研究[D].上海:上海交通大学,2005.
[5]荆学东,吉涛,何凯,等. 一种卧式圆柱度测量虚拟仪器的不确定度评估[J]. 陕西科技大学学报,2011,29(1):121-124.
[6]孔昭俊.论数值修约[J].数学理论与应用,2011,31(2):24-30.
[7]范啸涛,季光明,何永斌. 计算机浮点数算术运算的舍入误差研究[J]. 成都理工大学学报(自然科学版),2005,32(2):213-216.
[8]曾孟雄. 测量数据的舍入误差与有效数字[J]. 实用测试技术,1999,(4):44-46.
[9]叶德培. 测量不确定度理解评定与应用[M]. 北京: 中国计量出版社, 2007,36-47.
[10]国家质量监督检验检疫总局.JJF 1059—1999, 测量不确定度评定与表示[ S] .1999.
[11]詹惠琴,习友宝,古天祥. 基于数值仿真法的虚拟仪器不确定度评估研究[J].仪器仪表学报,26(10):1011-1014.
[12]张晓蓉, 蒋伟, 朱洪坤,等. AB型瓦楞纸箱边压强度测量不确定度评估[J]. 包装工程,2011,32(1):11-14.
[13]张立才,王民,高有堂.数字信号处理——原理\实现及应用[M].北京:北京邮电出版社,2011,107-120.
[14]杨绍祺,谈根林.稀疏矩阵—算法及其程序实现[M].北京:高等教育出版社,1985,35-218.
[15]程云鹏.矩阵论[M].西安:西北工业大学出版社,2003,178-233. |
|
|
|