|
|
Task-oriented Measurement Uncertainty Evaluation of Coordinate Measuring Machine |
CHEN Xiao-huai1,LI Hong-li1,YANG Qiao2,WANG Han-bin1,CHENG Yin-bao1 |
1.School of Instrument Science and Opto-electronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
2.Aviation Key Laboratory of Science and Technology on Aero-Engine Altitude Simulation, China Gas Turbine Establishment, Jiangyou, Sichuan 621703, China |
|
|
Abstract Based on geometrical product specification (GPS) and verification, the main sources of task-oriented measurement uncertainty of coordinate measuring machine (CMM) are analyzed. The definition and characteristics of reproducibility, which is one of CMM quantum property factors, are specially discussed. For the measurement task of CMM, the main factors that might cause measurement reproducibility are proposed, the experimental procedure to evaluate reproducibility value is studied, and the mathematical model for reproducibility evaluation is established. Furthermore, the approach to evaluate task-oriented measurement uncertainty of CMM is provided through an example of circle diameter measurement. The results of the example analysis show that the uncertainty component caused by reproducibility is up to 2.5μm when the combined standard uncertainty of circle diameter measurement is determined to be 3.2μm, and it is accounted for the highest proportion of the result uncertainty.
|
Received: 23 April 2014
Published: 20 October 2015
|
|
|
|
|
[1]张国雄. 三坐标测量机[M].天津:天津大学出版社,1999.
[2]张国雄. 三坐标测量机的发展趋势[J].中国机械工程, 2000, 11(1):222-226.
[3]Carmignato S, Savio E. Traceable volume measurements using coordinate measuring systems[J].CIRP Annals-Manufacturing Technology, 2011, 60(1):519-522.
[4]国家质量技术监督局计量司. 测量不确定度评定与表示指南[M].北京:中国计量出版社,2005.
[5]李红莉,陈晓怀,王宏涛. 坐标测量机测量端面距离的不确定度评定[J].中国机械工程,2012,23(20):2401-2404.
[6]Feng C X, Saal A L, Salsbury J G, et al. Design and analysis of experiments in CMM measurement uncertainty study[J].Precision Engineering, 2007, 31(2):94-101.
[7]张福民, 曲兴华, 叶声华. 面向对象的大尺寸测量不确定度分析[J].光学 精密工程, 2008, 16(11):2239-2243.
[8]马修水, 费业泰, 李光, 等. 坐标测量机动态测量不确定度评定研究[J].仪器仪表学报, 2008, 29(10):2146-2149.
[9]Jakubiec W, Prowucha W, Starczak M. Analytical estimation of coordinate measurement uncertainty[J].Measurement, 2012, 45(10):2299-2308.
[10]Sladek J, Gaska A. Evaluation of coordinate measurement uncertainty with use of virtual machine model based on Monte Carlo method [J].Measurement, 2012, 45(6):1564-1575.
[11]石照耀, 张宇, 张白. 三坐标机测量齿轮齿廓的不确定度评价[J].光学 精密工程, 2012, 20(4):766-771.
[12]Shan Wang,Xiaohuai Chen,Qiao Yang. Evaluation of measurement uncertainty based on Bayesian information fusion[C]//Sixth International Symposium on Precision Mechanical Measurements, 2013, 10.
[13]国家质量监督与检验检疫总局. JJF 1059.1—2012 测量不确定度评定与表示[S].
[14]白旭. 测量系统分析(MSA)在计量工作中的应用[J].计量与测试技术, 2007, 34(9):58-59.
[15]Weckenmann A, Knauer M. The Influence of Measurement Strategy on the Uncertainty of CMM Measurements[J].CIRP Annals-Manufacturing Technology, 1998, 47(1): 451-454. |
|
|
|