Acta Metrologica Sinica  2015, Vol. 36 Issue (4): 418-422    DOI: 10.3969/j.issn.1000-1158.2015.04.18
Current Issue | Archive | Adv Search |
New Method for Identification of Hammerstein Model
LI Wen-jiang,LIN Si-jian,WANG Xuan
School of Electrical and Control Engineering, Liaoning Technical University, Huludao, Liaoning 125105, China
Download: PDF (2379 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  In order to improve the identification accuracy of nonlinear Hammerstein model, a new method of the hybrid optimization algorithm identifying the nonlinear model is put forward. The basic idea of the algorithm is to put the identification problem of parameters in the nonlinear system into a parameter space function optimization problem, and then using hybrid algorithm of the genetic algorithm and the improved particle swarm optimization algorithm to obtain the optimal solution of parameters problem. Finally, the simulation results show that the method for nonlinear identification has good effectiveness and robustness,get a good recognition effect, and is a feasible method to solve the problem of nonlinear recognition.
Key wordsMetrology      Nonlinear Hammerstein model      System identification      Particle swarm optimization algorithm      Genetic algorithm     
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
LI Wen-jiang
LIN Si-jian
WANG Xuan
Cite this article:   
LI Wen-jiang,LIN Si-jian,WANG Xuan. New Method for Identification of Hammerstein Model[J]. Acta Metrologica Sinica, 2015, 36(4): 418-422.
URL:  
http://jlxb.china-csm.org:81/Jwk_jlxb/EN/10.3969/j.issn.1000-1158.2015.04.18     OR     http://jlxb.china-csm.org:81/Jwk_jlxb/EN/Y2015/V36/I4/418
Copyright © Editorial Board of Acta Metrologica Sinica
Supported by:Beijing Magtech