|
|
A Monolithic Scheme Based Femtosecond Optical Frequency Comb Covering 633nm Wavelength |
LIANG Zhi-guo1,WEI Zhi-yi2,HAN Hai-nian2,ZHANG Da-peng1,YE Peng2,WU Teng-fei1 |
1.Science and Technology on Metrology and Calibration Laboratory, Changcheng Institute of Metrology and Measurement, Beijing 100095,China;
2.Physics Institute of Chinese Academy of Science , Beijing 100084,China |
|
|
Abstract Femtosecond optical frequency comb is considered as a precise gear between the optical frequency and radio frequency. Both self reference phase lock optical frequency combs and monolithic scheme laser combs are compared, the former has wider spectrum and uglier stability, but the other has better stability and thinner spectrum. Based on the monolithic scheme laser comb, through compressing laser pulse width outside the cavity, then by using photonic crystal fiber widen spectrum, obtain wider spectrum, and the 633nm wavelength is covered, it can be applied to measure the optical frequency including 633nm wavelength.
|
|
|
|
|
[1]Zhang Wei, Han Hainian, Zhao Yanying,et al. A 350MHz Ti: sapphire laser comb based on monolithic scheme and absolute frequency measurement of 729nm laser[J].Optics Express, 2009, 17(8): 6059-6067.
[2]Lea S N, Rowley W R C, Margolis H S, et al. Absolute frequency measurements of 633nm iodine-stableized helium-neon lasers[J].Metrologia, 2003, 40(2): 84-88.
[3]Ma L S, Picard S, Zucco M, et al. Direct measurement of the absolute frequency of the international reference laser BIPM4[J].Metrologia, 2004, 41(1): 65-68.
[4]Bernard J E, Madej A A, Siemsen K J, et al. Absolute frequency measurement of the HeNe/I2 Standard at 633nm[J].Optics Communications, 2001, 187(1): 211-218.
[5]Yoon T H, Ye J, Hall J L, et al. Absolute frequency measurement of the iodine-stabilized He-Ne laser at 633nm[J]. Applied Physics B Laser and Optics, 2001, 72(2): 221-226.
[6]Madej A A, Marmet L, Bernard J E, et al. Sub-kilohertz linewidths and absolute frequency measurement for the single Sr+ atom at 445 THz[C]// 13th International Conference on Laser Spectroscopy (THICOLS '97), Hangzhou, 1997,102-105.
[7]Ye J, Yoon T H, Hall J L, et al. Accuracy Comparison of Absolute Optical Frequency Measurement between Harmonic-Generation Synthesis and a Frequency-Division Femtosecond Comb[J].Physical Review Letters, 2000, 85(18): 3797-3800.
[8]Ma L S, Zucco M, Picard S, et al. A new method to determine the absolute mode number of a mode-locked femtosecond-laser comb used for absolute optical frequency measurement[J].IEEE Journal of selected topicas in Quantum Electronics, 2003, 9(4) : 1066-1071.
[9]Holzwarth R, Nevsky A Y, Zimmermann M, et al. Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer[J].Applied Physics B: Lasers and Optics, 2001, 73(3): 269-271.
[10]Rovera G D, Ducos F, Zondy J J, et al. Absolute frequency measurement of an I2 stabilized Nd: YAG optical frequency standard[J].Measurement Science Technology, 2002, 13(6): 918-922.
[11]Klein A A, Vigue H, Chardonnet C.Absolute frequency measurement of 12C16O2 Laser lines with a femtosecond laser comb and new determination of the 12C16O2 molecular constants and frequency grid[J].Journal of Molecular Spectroscopy, 2004, 228(1) : 206-212.
[12]Hong F L, Ishikawa J, Zhang Y, et al. Frequency reproducibility of iodine-stabilized Nd :YAG laser at 532nm, Optics Communications[J].Optics Communications, 2004, 235(4-6): 377-385.
[13]Ducos F, Hadjar Y, Rovera G D, et al. Progress toward absolute frequency measurements of the 127I2-stabilized Nd : YAG laser at 563.2THz/532nm[J].IEEE Transactions on Instrumentation and Measurement, 2001, 50(2): 539-542.
[14]Diddams S A, Jones D J, Ye J, et al. Direct link between Microwave and Optical Frequencies with a 300THz Femtosecond Laser Comb[J].Physical Review Letters, 2000, 84(22): 5102-5105.
[15]Hong F L, Diddams S,Guo R X, et al. Frequency measurements and hyperfine structure of the R(85)33-O transition of molecular iodine with a femtosecond optical comb[J].Journal of the Optical Society of America B: Optical Physics, 2004, 21(1): 88-95.
[16]Ma L S, Robertsson L,Picard S, et al. The BIPM laser standards at 633nm and 532nm simultaneously linked to the SI second using a femtosecond laser in an optical clock configuration[J].IEEE Transactions on Instrumentation and Measurement, 2003, 52(2): 232-235.
[17]Reichert J, Holzwarth R, Udem T, et al. Measuring the frequency of light with mode-locked lasers[J].Optics Communications, 1999, 172(1-6): 59-68.
[18]Diddams S A, Jones D J, Ye J, et al. Direct RF to Optical frequency measurements with a femtosecond laser comb[J].IEEE Transactions on Instrumentation and Measurement, 2001, 50(2): 552-555.
[19]Fang Z, Lin B, Wang Q, et al. Phase lock of frequency comb’s f_(ceo) using servo-controlled pcf coupling technique[C]// CPEM. CPEM 2006 Digest, Conference on Precision Electromagnetic measurements(W328),Torino,Italy, 2006,306-307.
[20]韩海年,赵研英,张炜,等.PPLN晶体差频测量飞秒激光脉冲的载波包络相移[J].物理学报,2007,56(5): 2756-2759.
[21]王专.克尔透镜锁模飞秒钛宝石激光器前沿技术的研究[D]. 天津:天津大学,2005.
[22]向望华,王乘,陆向荣,等.单棱镜色散补偿自锁模钛宝石激光器[J].光学学报,1999,19(10):1318-1322.
[23]张炜.基于飞秒钛宝石激光的新型单块光学频率梳及光频测量研究[D].北京:中国科学院研究生院,2009. |
|
|
|