|
|
Signal Preprocessing of Gas Ultrasonic Flowmeter Based on Wavelet Threshold Algorithm |
GE Wenqi1,ZHANG Kun1,LIU Caizhi2 |
1. School of Control and Mechanical Engineering, Tianjin Chengjian University, Tianjin 300384, China
2. Pingyun Power Technology Co., Ltd, Tianjin 300110, China |
|
|
Abstract When the ultrasonic signal of gas ultrasonic flowmeter propagates in the gas, it is easy to be interfered by various kinds of noises, with serious energy attenuation, weak echo signal amplitude and low signal-to-noise ratio, in order to accurately collect the ultrasonic signal of the gas ultrasonic flowmeter, Based on the traditional threshold filtering algorithm, an improved wavelet threshold algorithm is proposed to preprocess the gas ultrasonic flowmeter signal; Simulate and compare the improved wavelet threshold algorithm with the traditional threshold algorithm,The collected ultrasonic signal is processed by 6-layer Coif5 wavelet filter using FPGA. The comparison between simulation and experiment shows that the root mean square error of the improved threshold filtering algorithm is 0.0014, and the signal-to-noise ratio is 88.3290dB,it improves the acquisition quality of ultrasonic flowmeter, has good noise reduction effect.
|
Received: 17 March 2023
Published: 30 September 2024
|
|
|
|
|
[6] |
余倩. 基于FPGA的超声波气体流量计声信号处理的研究 [D]. 南昌: 东华理工大学, 2014.
|
[13] |
刘博, 徐科军, 穆立彬, 等. 基于Kalman滤波的气体超声波流量计融合方法 [J]. 计量学报, 2018, 39(6): 868-873.
|
[2] |
陈体军. 基于FPGA时差法气体超声波流量计的研究 [D]. 西安: 西安科技大学, 2015.
|
[7] |
姚平. 复杂流场下气体超声波流量计测量精度提升方法 [D]. 杭州: 浙江大学, 2018.
|
|
MA Q Y. Application of ultrasonic gas flowmeter in low pressure environment [J]. Industrial Instrumentation & Automation, 2021(4): 29-32.
|
[1] |
张志君. 基于组分补偿的气体超声波流量计研究 [D]. 南昌: 东华理工大学, 2021.
|
[3] |
陈文会, 丁晓鸿, 陈江宁, 等. 超声波测距信号小波阈值去噪参数的选定方法 [J]. 传感技术学报, 2017, 30(3): 407-411.
|
[4] |
FOLKESTAD T, MYLVAGANAM K S. Chirp excitation of ultrasonic probes and algorithm for filtering transit times in high-rangeability gas flow metering [J]. IEEE Trans Ultrason Ferroelectr Freq Control, 1993, 40(3): 193-215.
|
[9] |
张淑莉, 李海华, 徐红如, 等. 基于FPGA超声波回波信号处理设计 [J]. 集成电路应用, 2020, 37(10): 4-6.
|
[10] |
张跳跳, 贺西平. 基于EMD的超声波信号去噪研究 [C]//2022年中国西部声学学术交流会, 2022.
|
|
WANG H B, WANG S H, JI B S, et al. An Improved Multiple Threshold Wavelet Packet De-noising Algorithm and Its Application [J]. Acta Metrologica Sinica, 2016, 37 (2): 205-208.
|
|
LIU B, XU K J, MU L B, et al. Fusion Method of Ultrasonic Gas Flowmeter Based on Kalman Filter [J]. Acta Metrologica Sinica, 2018, 39 (6): 868-873.
|
|
MA J, XU K J, JIANG Z, et al. A Signal Processing Method of Ultrasonic Gas Flowmeter Based on Peak Point Fitting of Ultrasonic Echo Energy [J]. Acta Metrologica Sinica, 2022, 43 (5): 597-602.
|
[17] |
江圳, 徐科军, 马杰, 等. 基于动态可变阈值的低功耗单声道气体超声波流量计 [J]. 计量学报, 2022, 43(3): 360-369.
|
[8] |
马勤勇. 超声波气体流量计在低压环境的应用 [J]. 工业仪表与自动化装置, 2021 (4): 29-32.
|
[14] |
马杰, 徐科军, 江圳, 等. 基于超声回波能量峰值点拟合的气体超声波流量计信号处理方法 [J]. 计量学报, 2022, 43(5): 597-602.
|
[15] |
TRAN N, WANG C C. Enhancement of the acc uracy of ultrasonic flowmeters by applyi ng the PCA algorithm in predicting flow patterns [J]. Measurement Science and Tec hnology, 2021, 32(8): 085901.
|
[18] |
YANG H, JIANG H H, MA X, et al. Applicatiion of improved wavelet threshold method and limit learning machine in MEMS Gyro error compensation [J]. Journal of sensing technology, 2018, 31 (10): 1535-1538.
|
|
CHEN W H, DING X H, CHEN J N, et al. The Parameter Selection Method of Wavelet Threshold Denoising in Ultrasonic Ranging Signal Process [J]. Journal of Transduction Technology, 2017, 30 (3): 407-411.
|
[11] |
王洪斌, 王世豪, 籍冰朔, 等. 基于改进多阈值小波包的去噪算法及应用 [J]. 计量学报, 2016, 37(2): 205-208.
|
|
JIANG Z, XU K J, MA J, et al. Low-power and Mono Gas Ultrasonic Flowmeter Based on Dynamic Variable Threshold [J]. Acta Metrologica Sinica, 2022, 43 (3): 360-369.
|
|
WANG Y P, HU L L, WANG B. Denoising of fiber Bragg grating sensing signal and implementation by FPGA based on digital filtering [J]. Journal of Xian University of Technology, 2015, 31(1): 95-99.
|
[5] |
KUPNIK M, OLEARY P, SCHRDER A, et al. Numerical simulation of ultrasonic transit-time flowmeter performance in high temperature gas flows [C]//IEEE Symposium on Ultrasonics, Honolulu, HI, USA, 2003.
|
|
ZHANG S L, LI H H, XU H R, et al. Design of Ultrasonic Echo Signal Processing Based on FPGA [J]. Applications of IC, 2020, 37 (10): 4-6.
|
[12] |
TANG X Y, XIE X, FAN B, et al. A Fault-Tolerant Flow Measuring Method Based on PSO-SVM With Transit-Time Multipath Ultrasonic Gas Flowmeters [J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(5): 992-1005.
|
[16] |
陈浩. 超声检测数据的压缩算法研究 [D]. 南京: 东南大学, 2019.
|
[19] |
王亚萍, 胡辽林, 王斌. 基于数字滤波的光纤光栅传感信号去噪及其FPGA实现 [J]. 西安理工大学学报, 2015, 31(1): 95-99.
|
[20] |
TASLIMI S, FARAJI R, AGHASI A, et al. Adaptive Edge Detection Technique Implemented on FPGA [J]. Iranian Journal of Science and Technology-Transactions of Electrical Engineering, 2020, 44(9).
|
|
|
|