|
|
Research on the Key Technology and Standardization for Current Sensing Based on Diamond NV Color Center |
CEN Wei1,BAI Jingfen1,MENG Jing1,LI Qilin2,LÜ Yingjie1,DUAN Yongxian1 |
1. China Electric Power Research Institute, Beijing 100192, China
2. State Grid Sichuan Electric Power Marketing Service Center, Chengdu,Sichuan 610042, China |
|
|
Abstract To promote the practical application of quantized current sensing technology, a current sensing technology based on diamond NV color centers was explored, and its standardization technology was preliminarily researched. Firstly, the structure and physical properties of diamond NV color centers were introduced, and the optical properties and spin quantum coherence based current sensing measurement principles of diamond NV color centers were analyzed. Practical technologies such as magnetic noise suppression, magnetic measurement sensitivity improvement, and miniaturization of measurement chips were studied. Then, the technical advantages and standardization requirements of current sensing measurement technology based on diamond NV color centers were analyzed, and suggestions for standard system construction were proposed to provide technical support for the research, equipment development, and sensing measurement system implementation of current sensing technology based on diamond NV color centers.
|
Received: 31 March 2024
Published: 30 September 2024
|
|
Fund:Research on construction and internationalization strategy of new electromagnetic measuring equipment and system standard system for power system |
|
|
|
[1] |
邢力, 冯晓娟, 张金涛. 金刚石氮-空位色心连续式温度测量灵敏度分析[J]. 计量学报, 2023, 44(5): 707-713.
|
[2] |
李中豪, 刘雨奇, 张浩, 等. 基于固态量子自旋调控的微位移检测系统设计与测量[J]. 计量学报, 2024, 45(4): 465-470.
|
|
LI Z H, LIU Y Q, ZHANG H, et al. Design and measurement of micro-displacement detection system based on solid-state quantum spin control[J]. Acta Metrologica Sinica, 2024, 45(4): 465-470.
|
[4] |
TAYLOR J M. Quantum metrology and simulation [C]// Proceedings of the Dalgarno Celebratory Symposium-Contributions to Atomic, Molecular, and Optical Physics, Astrophysics, and Atmospheric Physics. 2008.
|
|
ZHAO J, MA Z M, QIN L, et al. Design of quantum manipulation system based on ensemble of nitrogen-vacancy color centers in diamond[J]. Science Technology and Engineering, 2018, 18(36): 1-5.
|
[10] |
赵博文, 张少春. 基于金刚石NV色心的电流测量装置及测量方法: 202110994982.0[P].2021-11-22.
|
[11] |
史子阳. 基于金刚石NV色心的高精度电流传感方法研究[D]. 太原: 中北大学, 2023.
|
[13] |
TEUKOLSKY S A. Quantum sensing with nitrogen-vacancy centers in diamond [J]. Nature Nanotechnology, 2016, 11(1): 21-31.
|
[5] |
GAO J, ZHAO J, MA Z M, et al. Magnetic sensitivity technology based on microwave modulation of solid state spin system NV center [J]. Journal of Measurement Science and Instrumentation, 2018, 9(2): 188-193.
|
[8] |
房建成, 魏凯, 江雷, 等. 超高灵敏极弱磁场与惯性测量科学装置与零磁科学展望[J]. 航空学报, 2022, 43(10): 527752. FANG J C, WEI K, JIANG L, et al. Scientific facilities for ultrasensitive of measurement magnetic field and inertial rotation and prospects of zero-magnetism science[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527752.
|
[14] |
MAURER P C, KUCSKO G, et al. Quantum non-demolition imaging with a single-photon detector[J]. Nature Photonics, 2012, 6(1): 570-576.
|
[16] |
麦麦提依明·吐孙. 基于固态自旋的小规模量子处理器实验研究[D]. 合肥: 中国科学技术大学, 2023.
|
[18] |
刘郁松. 基于金刚石氮空位色心的微波频谱探测方法研究[D]. 太原: 中北大学, 2023.
|
[20] |
胡欣, 杨丽丽, 徐成伟, 等. 金刚石中氮空位中心在外加磁场下的电子自旋共振[J]. 量子光学学报, 2012, 18(4): 382-388.
|
|
HU X, YANG L L, XU C W, et al. Dependence of Electronic Spin Resonance of Single Nitrogen Vacancy Center in Diamond on an External Magnetic Filed [J]. Acta Sinica Quantum Optica, 2012, 18(4): 382-388.
|
|
LIU Y, LIN H B, ZHANG S C, et al. Optical Fiber Quantum Sensing Based on Diamond Nitrogen-Vacancy Center [J]. Advances in laser and optoelectronics, 2023, 60(11): 11-23.
|
[22] |
王浩东. 基于金刚石氮-空位色心的低温磁测量技术及其应用[D]. 合肥: 中国科学技术大学, 2023.
|
[24] |
GAEBEL T, DOMHAN M, POPA I, et al. Room-temperature coherent coupling of single spins in diamond[J]. Nature Physics, 2006, 2(6): 408-413.
|
|
DONG Y, DU B, ZHANG S C, et al. Solid quantum sensor based on nitrogen-vacancy center in diamond[J]. Acta Physica Sinica, 2018, 67(16): 160301.
|
[27] |
宋东波, 仇茹嘉, 王鑫, 等. 基于无微波金刚石NV色心测磁技术的电流测量应用[J]. 微纳电子技术, 2024, 61(2): 159-167.
|
[29] |
李想. 金刚石中高浓度NV色心的制备和弱磁探测应用[D]. 上海: 华东师范大学, 2020.
|
[32] |
沈翔. 面向NV色心陀螺的声子辅助自旋量子态探测方法研究[D]. 南京: 东南大学, 2022.
|
[34] |
付林兴, 邓志武. 毕奥-萨伐尔定律的推导 [J]. 湘潭师范学院学报 (自然科学版), 2006, 28 (1): 28-29.
|
[39] |
楚中毅, 孙晓光, 万双爱, 等. 无自旋交换弛豫原子磁强计的主动磁补偿[J]. 光学精密工程, 2014, 22(7): 1808-1813.
|
[48] |
中国电子技术标准化研究院, 全国信息技术标准化技术委员会. 信息技术标准化指南[M]. 北京: 电子工业出版社, 2019.
|
[3] |
TAYLOR J M, CAPPELLARO P, CHILDRESS L, et al. High sensitivity diamond magnetometer with nano scale resolution[J]. Nature Physics, 2008, 4(10): 810-816.
|
[12] |
SHI Z Y, GAO W, WANG Q, et al. Current sensor based on diamond nitrogen-vacancy color center[J]. Chinese Physics B, 2023, 32(7): 144-149.
|
[21] |
刘勇, 林豪彬, 张少春,等. 基于金刚石氮-空位色心的光纤量子传感[J]. 激光与光电子学进展, 2023, 60(11): 11-23.
|
|
SONG D B, OIU R J, WANG X, et al. Application of magnetometry technique based on microwave-free diamond NV color center in current measurement Technology[J]. Micronanoelectronic Technology, 2024, 61(2): 020503.
|
[28] |
赵龙, 王鑫, 孙峰, 等. 基于金刚石NV色心的电流传感器仿真[J]. 合肥工业大学学报(自然科学版), 2023, 46(6): 760-766.
|
|
JING K, XIE Y J, LAN Z H, et al. Magnetometry based on nitrogen-vacancy center in diamond[J]. Metrology & Measurement Technology, 2023, 43(4): 15-32.
|
|
FU L X, DENG Z W. Derivation of the Biot-Savart law [J]. Journal of Xiangtan Normal University(Natural Science Edition), 2006, 28 (1): 28-29.
|
[35] |
ZHAO L, YUE D H, LIU C L, et al. Magnetic field analysis in a diamond anvil cell for Meissner effect measurement by using the diamond NV-center [J]. Chinese Physics: B, 2019, 28 (3): 030702.
|
[37] |
FESCENKO I, JARMOLA A, SAVUKOV I, et al. Diamond magnetometer enhanced by ferrite flux concentrators[J]. Physical Review Research, 2020, 2(2): 023394.
|
[40] |
WANG Z C, KONG F, ZHAO P J, et al. Picotesla magnetometry of microwave fields with diamond sensors [J]. Science Advances, 2022, 8(32): 8158.
|
[42] |
ST RNER F M, BRENNEIS A, KASSEL J, et al. Compact integrated magnetometer based on nitrogen vacancy centres in diamond [ J]. Diamond and Related Materials, 2019, 93: 59-65.
|
[43] |
XIE F, HU Y, LI L, et al. A microfabricated fiber integrated diamond magnetometer with ensemble nitrogen vacancy centers [J]. Applied Physics Letters, 2022, 120(19): 191104.
|
[44] |
XIE F, LIU Q, HU Y, et al. A microfabricated diamond quantum magnetometer with picotesla scale sensitivity[C]// 2023 IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS). 2023.
|
[46] |
KIM D, IBRAHIM M I, FOY C, et al. A CMOS integrated quantum sensor based on nitrogen-vacancy centres[J]. Nature Electronics, 2019, 2(7): 284-289.
|
|
XING L, FENG X J, ZHANG J T. Analysis of Continuous Temperature Measurement Sensitivity Based on Nitrogen-vacancy Centers in Diamond[J]. Acta Metrologica Sinica, 2023, 44(5): 707-713.
|
[9] |
房建成. 建设天堂硅谷国之重器 打造国家战略科技力量[J]. 杭州科技, 2022, 53(6): 19-20.
|
[19] |
王成杰. 基于金刚石氮-空位色心观测磁体中的演生粒子[D]. 合肥: 中国科学技术大学, 2021.
|
[26] |
宋学瑞. 纳米金刚石中 NV 色心的制备与量子调控研究 [D]. 合肥: 中国科学技术大学, 2014.
|
[33] |
王宇.金刚石中高浓度NV色心的制备和光谱表征[D].上海:华东师范大学,2018.
|
[41] |
CAPPELLARO P. Quantum spin gyroscope [R]. Massachusetts Inst of Tech Cambridge, 2015.
|
|
WU F X, XING L, FENG X J, et al. The Methods and Prospects of Temperature Measurement for Chip Development in Micro-nano Meter Scale[J]. Acta Metrologica Sinica, 2024, 45(9):1262-1272.
|
[6] |
赵娟, 马宗敏, 秦丽,等. 基于系综金刚石氮空位的色心量子调控系统设计[J]. 科学技术与工程, 2018, 18(36): 1-5.
|
[7] |
MAAYANI S, FOY C, ENGLUND D R, et al. Distributed quantum fiber magnetometry[J]. Laser & Photonics Reviews, 2019, 13(7): 1900075.
|
[15] |
TWITCHEN D J. Nitrogen-vacancy color centers in diamond: A review of recent progress and applications[J]. Reports on Progress in Physics, 2017, 80(4): 046502.
|
[17] |
高研杰. 基于金刚石NV色心的微波幅频测量关键技术研究[D]. 太原: 中北大学, 2023.
|
[23] |
JELEZKO F, GAEBEL T, POPA I, et al. Observation ofcoherent oscillations in a single electron spin[J]. Physical Review Letters, 2004, 92(7): 076401.
|
[25] |
董杨, 杜博, 张少春, 等. 基于金刚石体系中氮-空位色心的固态量子传感[J]. 物理学报, 2018, 67(16): 160301.
|
[30] |
靖克, 谢一进, 蓝子桁, 等. 基于金刚石氮-空位色心的磁测量技术[J]. 计测技术, 2023, 43(4): 15-32.
|
[31] |
PURSER C M. Magnetic Resonance Detection Using Nitrogen-Vacancy Centers in Diamond[D]. Columbus: The Ohio State University, 2019.
|
[38] |
XIE Y, YU H, ZHU Y, et al. A hybrid magnetometer towards femtotesla sensitivity under ambient conditions[J]. Science Bulletin, 2021, 66(2): 127-132.
|
|
CHU Z Y, SUN X G, WANG S A, et al. Active magnetic compensation of spin-exchange-relaxation free atomic magnetometer [J]. Optics and Precision Engineering, 2014, 22(7): 1808-1813.
|
[47] |
中国科学院, 国家互联网信息办公室, 中华人民共和国教育部, 等. 中国科研信息化蓝皮书[M]. 北京: 电子工业出版社, 2018.
|
[49] |
吴飞翔, 邢力, 冯晓娟, 等. 芯片研制用微纳米尺度温度测量方法及其展望[J]. 计量学报, 2024, 45(9): 1262-1272.
|
|
ZHAO L, WANG X, SUN F, et al. Simulation of current transformer based on NV center in diamond[J]. Journal of Hefei University of Technology (Natural Science), 2023, 46(6): 760-766.
|
[36] |
ZHAO W, XU Z W, REN F, et al. Enhancing the fabrication yield of NV centers in diamond by pre-doping using molecular dynamics simulation [J]. Diamond and Related Materials, 2023, 132: 109683.
|
[45] |
WEBB J L, CLEMENT J D, TROISE L, et al. Nanotesla sensitivity magnetic field sensing using a compact diamond nitrogen-vacancy magnetometer [ J ]. Applied Physics Letters, 2019, 114(23): 231103.
|
|
|
|