|
|
Construction of On-line Image Acquisition Device for Cylindrical Metal Pipe Fittings and Control Optimization of Key Parameters |
TAO Guohao1,LIU Zihao2,3,XU Xiaomeng4,LU Yebo2,TAO Kai5,HONG Zhe5 |
1. Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
2. Jiaxing University, Jiaxing, Zhejiang 314033
3. Tianjin University, Tianjin 300072, China
4. China Jiliang University, Hangzhou,Zhejiang 310018, China
5. Zhejiang Master Hydraulic Pipe Fittings Co, LTD,Jiaxing, Zhejiang 314303, China |
|
|
Abstract The appearance of defects in cylindrical metal pipe fittings during the production process is random, and it is difficult for traditional mono- and binocular machine vision systems to acquire the full-surface information of the pipe fittings, an on-line image acquisition scheme for the full surface of the pipe fittings is proposed to realize high-quality and all-round imaging information collection. Firstly, by acquiring the two-dimensional image captured by a single camera, establishing the correspondence between the two-dimensional image and the surface covered by the column, calculating the actual pipe surface coverage angle corresponding to the two-dimensional image, and judging the number of cameras required to acquire the full-surface information of pipe fittings, we adopt multi-camera coordination with the real-time acquisition of the image in the clockwise direction of the disk. Secondly, a multi-factor experimental program is established based on the response surface design method to evaluate the effects of aperture value, exposure time and gain of the camera lens on image quality. The optimal camera parameters of cylindrical side camera and cylindrical ends camera are determined at the acceptable maximum speed to reduce the influence of motion blur and improve the efficiency of shooting. Finally, based on the optimal parameters, the images of metal pipe fittings are acquired and evaluated on-line in real-time to retain better quality images of pipe fittings. The experimental results meet the requirements of high-quality, fine defects clear metal surface defect detection data, and lay a foundation for the subsequent study of real-time defect detection of cylindrical metal pipe fittings.
|
Received: 10 November 2023
Published: 30 September 2024
|
|
|
|
|
[17] |
于福才, 张丹, 樊璇, 等. 泵体口环装配工艺的机器视觉化研究及应用[J]. 现代制造工程, 2022, 45(3): 133-139.
|
|
ZHANG S H, XU Y, ZHOU W L, et al. Machining and forming technology of precision pipe fittings[J]. Mechanical Worker, 2002, 53(1): 52-53.
|
[15] |
樊毅龙. 基于机器学习的致密气藏水力压裂施工参数优化设计[D]. 西安: 西安石油大学, 2021.
|
[1] |
张士宏, 许沂, 周文龙, 等. 精密管件加工成形技术[J]. 机械工人, 2002, 53(1): 52-53.
|
[2] |
蔡瑞, 李勇, 刘正帅, 等. 金属管件外检式电磁超声导波换能器电磁场量的解析计算式[J]. 应用力学学报, 2021, 38(2): 538-544.
|
[3] |
宿磊, 王立建, 祁阳, 等. 基于IADSA深度迁移网络的金属表面缺陷检测[J]. 机械工程学报, 2023, 71(23): 1-10.
|
[4] |
张曙文, 钟振宇, 朱大虎. 基于改进YOLOx网络的金属齿轮表面缺陷检测方法[J]. 激光与光电子学进展, 2023, 60(22): 280-290.
|
[5] |
BAO Y D, WU L K, DAI Y, et al. Research on surface image acquisition system of train bearing cylindrical roller[J]. Journal of Mechanical Science and Technology, 2022, 36(8): 4353-4361.
|
[6] |
WEN S, CHEN Z, LI C. Vision-Based Surface Inspection System for Bearing Rollers Using Convolutional Neural Networks[J]. Applied Sciences, 2018, 8(12): 2565-2565.
|
[7] |
TAO J, ZHU Y, JIANG F, et al. Rolling Surface Defect Inspection for Drum-Shaped Rollers Based on Deep Learning[J]. IEEE Sensors Journal, 2022, 22(9): 8693-8700.
|
[11] |
徐超达. 基于机器视觉的办公座椅零件喷涂质量在线监控系统[D]. 杭州: 杭州电子科技大学, 2023.
|
[14] |
许嘉杨. 苏里格气田泡沫排水工艺参数优化研究[D]. 西安: 西安石油大学, 2021.
|
[16] |
饶秀勤.基于机器视觉的水果品质实时检测与分级生产线的关键技术研究[D].杭州:浙江大学,2008.
|
[21] |
韩向朝, 潘毅, 谢雨冬, 等. 无人机图像采集法对清水混凝土外观质量评价的研究[J]. 材料导报, 2021, 35(S2): 205-212.
|
[22] |
周文彬. 浅谈智能型工业相机的应用[J]. 电子测试, 2018, 25(22): 135-136.
|
|
ZHANG S W, ZHONG Z Y , ZHU D H. Surface defect detection method of metal gear based on improved YOLOx network[J]. Advances in laser and optoelectronics, 2023, 60(22): 280-290.
|
[9] |
XU L M, YANG Z Q, JIANG Z H, et al. Light source optimization for automatic visual inspection of piston surface defects[J]. The International Journal of Advanced Manufacturing Technology,2017, 91(5): 2245-2256.
|
|
MENG Y D, TANG S L, FU Y H. Design of Valve Offset Detection Device based on photoelectric Signal [J]. Automotive Parts, 2022, 17(4): 79-81.
|
[13] |
田海东. 铝合金薄壁结构件铣削变形预测与工艺参数优化[D]. 济南: 山东大学, 2020.
|
|
YU F C, ZHANG D, FAN X, et al. Research and Application of Machine Vision in Assembly Process of Pump Body mouth Ring [J]. Modern Manufacturing Engineering, 2022, 45(3): 133-139.
|
|
JIN K, CHEN X R. Research on Measurement of Geometric Parameters of Optical Fiber Endface Based on Machine Vision[J]. Acta Metrologica Sinica, 2023, 44(2): 165-170.
|
|
SUN Y C. Design and Simulation of intelligent classification Stereoscopic Garage based on PLC [J]. Science and Technology Innovation and Productivity, 2022, 43(10): 50-52.
|
[19] |
鞠波. 基于远心镜头的高精度视觉测量仪[J]. 兵工自动化, 2014, 33(8): 82-86.
|
|
JU B. High precision vision measuring instrument based on Telecentric lens [J]. Ornological Industry Automation, 2014, 33(8): 82-86.
|
[20] |
TAHERI A, YENTZER B A, FELDMAN S R. Focusing and depth of field in photography: application in dermatology practice[J]. Skin Research and Technology, 2013, 19(4): 394-397.
|
[23] |
张丹丹, 赵迎会. 自然图像质量评价方法综述[J]. 电脑知识与技术, 2020, 16(9): 203-205.
|
[24] |
熊显名, 王秀秀, 任星晓. 激光位移传感器在晶圆检测中的应用研究[J]. 自动化与仪器仪表, 2022, 42(8): 7-12.
|
|
XIONG X M, WANG X X, REN X X. Application research of Laser Displacement Sensor in Wafer Detection [J]. Automation & Instrumentation, 2022, 42(8): 7-12.
|
[25] |
李郁峰, 陈念年, 张佳成. 一种快速高灵敏度聚焦评价函数[J]. 计算机应用研究,2010,27(4):1534-1536.
|
|
CAI R, LI Y, LIU Z S, et al. Analytical calculation formula of electromagnetic field quantity of external inspection type electromagnetic ultrasonic guided wave transducer for metal pipe fittings[J]. Chinese Journal of applied Mechanics, 2021, 38(2): 538-544.
|
|
SU L, WANG L J, QI Y, et al. Metal surface defect detection based on IADSA deep migration network[J]. Journal of Mechanical Engineering, 2023, 71(23): 1-10.
|
[10] |
FEYZA C, SERAP K, MUHAMMED A O, et al. Online metallic surface defect detection using deep learning[J]. Emerging Materials Research, 2020, 9(4): 1266-1273.
|
[12] |
孟耀东,汤素雷, 傅瑜杭.基于光电信号的气门偏移检测装置设计[J].汽车零部件,2022,17(4):79-81.
|
[17] |
金柯, 陈晓荣. 基于机器视觉的光纤端面几何参数测量研究[J]. 计量学报, 2023, 44(2): 165-170.
|
[18] |
孙彦超. 基于PLC的智能分类立体车库设计与仿真[J]. 科技创新与生产力, 2022, 43(10): 50-52.
|
|
ZHOU W B. Discussion on the Application of Intelligent Industrial Camera [J]. Electronic Testing, 2018, 25(22): 135-136.
|
|
ZHANG D D, ZHAO Y H. Review of natural image quality evaluation methods [J]. Computer Knowledge and Technology, 2019, 16(9): 203-205.
|
[8] |
TIAN H, WANG D, LIN J, et al.Surface Defects Detection of Stamping and Grinding Flat Parts Based on Machine Vision[J].Sensors,2020,20(16):4531-4531.
|
|
HAN X C, PAN Y, XIE Y D, et al. Study on evaluation of appearance quality of exposed concrete by UAV image acquisition [J]. Materials Review, 2019, 35(S2): 205-212.
|
|
LI Y F, CHEN N N, ZHANG J C. A fast and highly sensitive focusing evaluation function[J]. Application Research of Computers, 2010, 27(4): 1534-1536.
|
|
|
|