|
|
Study on the Electrical Impedance Block Sparse Imaging Method of Deep Learning Based on DK-SVD |
WANG Qi1,YANG Yuhan1,LI Xiuyan1,DUAN Xiaojie1,WANG Jianming2,SUN Yukuan2,FENG Hui3 |
1. Electronic and Information Engineering College,Tianjin Polytechnic University,Tianjin 300387,China
2. Computer Science College, Tianjin Polytechnic University, Tianjin 300387,China
3. Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 211100, China |
|
|
Abstract Aiming at the ill-posedness and nonlinearity of electrical impedance tomography inverse problem, a DK-SVD-based block sparse image reconstruction method is proposed.The multi-layer perceptron is introduced to finetune optimal model parameters for measurement data considering the complexity of datasets and improve the image quality.The iterative shrinkage threshold algorithm is used to accelerate convergence in the sparse coding stage.The simulation results show that the structural similarity of the reconstructed image by DK-SVD algorithm can reach more than 0.95, the error can be controlled at about 0.1, and the average reconstruction speed is 0.034s, which effectively improves the quality and efficiency of electrical impedance tomography, and further experiments prove that the algorithm has good noise robustness and practical application value.
|
Received: 18 August 2023
Published: 26 September 2024
|
|
|
|
|
|
REN C S, WANG Y, ZHAO S. Electrical impedance tomography measuring gastric emptying and gastric motility [J]. World Chinese Journal of Digestology, 2008(8): 799-805.
|
[11] |
华志胜, 付丽华. 基于块分类和字典优化的K-SVD图像去噪研究 [J]. 计算机工程与应用, 2017, 53(16): 187-192.
|
|
YAN P M, CAO Y X. Electrical impedance tomography in chest based on the elliptical geometry model [J]. Electronic Measurement Technology, 2016, 39(6): 81-84.
|
[2] |
王超, 刘俊霞, 王化祥. 高频医学断层成像系统的硬件设计 [J]. 计量学报, 2004, 25(2): 177-180.
|
|
YOU Y, ZHAO Z W, DAI M, et al. Electrical impedance tomography experiment for transient cerebral ischemia [J]. Chinese Journal of Neurology, 2008(2): 123-125.
|
[13] |
程一峰, 刘增力. 改进的K-奇异值分解图像去噪算法 [J]. 计量学报, 2018, 39(3): 332-336.
|
[1] |
严佩敏, 曹永香. 基于椭圆几何模型的胸部电阻抗成像 [J]. 电子测量技术, 2016, 39(6): 81-84.
|
|
LIU M C, XING J Y. Electrical impedance tomography in lung imaging of the respiratory system [J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2019, 5(4): 373-378.
|
[4] |
任超世, 王妍, 赵舒. 电阻抗断层成像与胃排空和胃动力检测 [J]. 世界华人消化杂志, 2008(8): 799-805.
|
[6] |
VELASCO A C, DARBAS M, MENDOZA R. Numerical Resolution of the Electrical Impedance Tomography Inverse Problem with Fixed Inclusions [J]. International Journal of Mathematics and Computer Science, 2021, 16(3): 1063-1076.
|
[8] |
AHARON M, ELAD M, BRUCKSTREIN A M. The K-SVD: an algorithm for designing of over-complete dictionaries for sparse representation [J]. IEEE Transaction on Image Processing, 2006, 54(11) : 4311-4322.
|
|
CHENG Y F, LIU Z L. Improved K-SVD Image Denoising Algorithm [J]. Acta Metrology Sinica, 2018, 39(3): 332-336.
|
[23] |
邢琮琮, 吴燕冈, 赵昕, 等. 奇异值分解(SVD)在位场数据去噪中的应用 [J]. 世界地质, 2016, 35(4): 1119-1126.
|
[3] |
刘孟春, 邢金燕. 电阻抗断层成像技术在呼吸系统肺功能成像中的应用 [J]. 中华重症医学电子杂志(网络版), 2019, 5(4): 373-378.
|
[10] |
RUBINSTEIN R, ZIBULEVSKY M, ELAD M. Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit[R]. Computer Science Department, Technion, 2008.
|
|
HUA Z S, FU L H. K-SVD image denoising based on noisy image blocks classification and dictionary optimization [J]. Computer Engineering and Applications, 2017, 53(16): 187-192.
|
[15] |
LACRAMA D L, GHERHES V, ALEXA F, et al, Automatic survey processing using a MLP neural net[C]//10th Symposium on Neural Network Applications in Electrical Engineering. 2010:123-126.
|
[17] |
BECK A, TEBOULLE M. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J]. Siam J Imaging Sciences, 2009, 2(1): 183-202.
|
[18] |
DAUBECHIES I, DEFRISE M, MOL C D. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J]. Communications on Pure and Applied Mathematics, 2004, 57(11):1413-1457.
|
[19] |
WANG Q, LIAN Z, WANG J, et al. Accelerated reconstruction of electrical impedance tomography images via patch based sparse representation [J]. Review of Scientific Instruments, 2016, 87(11): 114707.
|
[22] |
ALRUWAILI E, LI J. Majorization-Minimization Total Variation Solution Methods for Electrical Impedance Tomography [J]. Mathematics, 2022, 10(9): 1-18.
|
[24] |
MAIRAL J, SAPIRO G, ELAD M. Learning multiscale sparse representations for image and video restoration [J]. Multiscale modeling & simulation, 2008, 7(1): 214-241.
|
[26] |
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity [J]. IEEE transactions on image processing, 2004, 13(4): 600-612.
|
|
WANG C, LIU J X, WANG H X. Design of High-Frequency Medical EIT System [J]. Acta Metrology Sinica, 2004, 25(2): 177-180.
|
[5] |
游宇, 赵振伟, 代萌, 等. 短暂性脑缺血的电阻抗断层成像实验 [J]. 中华神经科杂志, 2008(2): 123-125.
|
[9] |
ZENG M, ZHANG W, CHEN Z. Group-based K-SVD denoising for bearing fault diagnosis [J]. IEEE Sensors Journal, 2019, 19(15): 6335-6343.
|
|
CHEN J, LIU Y Y,HUANG K X, et al. Rolling Bearing Fault Diagnosis Method Based on Singular Value Decomposition and Independent Component Analysis [J]. Acta Metrology Sinica, 2022, 43(6): 777-785.
|
[16] |
XIANG C, DING S, LEE T H. Geometrical interpretation and architecture selection of MLP. [J]. IEEE transactions on neural networks, 2005, 16(1): 84-96.
|
[21] |
WANG M. Electrical impedance tomography: US06940286B2[P]. 2005.
|
[25] |
ZHANG Z Y, ZHU F S, ZHOU R, et al. An Efficient Method for Density Projection Field Solution Based on Finite Element Method[C]//Proceedings of 2020 2nd International Conference on Computer Modeling, Simulation and Algorithm(CMSA2020).2020: 703-710.
|
[7] |
SEO J K, KIM K C, JARGAL A, et al. A Learning-Based Method for Solving Ill-Posed Nonlinear Inverse Problems: A Simulation Study of Lung EIT [J]. SIAM Journal on Imaging Sciences, 2019, 12(3): 1275-1295
|
[12] |
陈剑, 刘圆圆,黄凯旋,等. 基于奇异值分解和独立分量分析的滚动轴承故障诊断方法[J]. 计量学报, 2022, 43(6): 777-785.
|
[14] |
ZHENG H, FANG G, DUAN S, et al. A novel method for noise reduction of blade tip timing signals based on sparse representation and dictionary learning [J]. Journal of Low Frequency Noise, Vibration and Active Control, 2023: 43(1): 437-454.
|
[20] |
HE J C, LI L, XU J C. Approximation properties of deep ReLU CNNs [J]. Research in the Mathematical Sciences, 2022, 9(3): 1-24.
|
|
XING C C, WU Y G, ZHAO X, et al. Application of Singular Value Decomposition (SVD) in Denoising of Potential Field Data [J]. Global Geology, 2016, 35(4): 1119-1126.
|
|
|
|