|
|
Research on Early Warning of Abnormal Working Conditions of Wind Turbine Based on QM-DBSCAN and BiLSTM |
MA Liangyu1,2,LIANG Shuyuan1,CHENG Dongyan1,GENG Yanzhu1,DUAN Xinhui1,3 |
1.Department of Automation, North China Electric Power University, Baoding, Hebei 071003, China
2.Baoding Key Laboratory of State Detection and Optimization for Integrated Energy System, Baoding, Hebei 071003, China
3.Baoding SinoSimu Technology Co.Ltd, Baoding, Hebei 071000, China |
|
|
Abstract A wind turbine fault warning method based on quartile method(QM)-density-based spatial clustering of applications with noise(DBSCAN) and Bi-directional long and short-term memory network (BiLSTM) is proposed.Firstly, in view of the difficulty of cleaning the power limit point in the wind speed-power diagram, the combination of QM and DBSCAN is proposed to preprocess the modeling operation data. secondly, by analyzing the operation principle of wind turbine and determining the input and output parameters of the normal working condition prediction model of wind turbine combined with LightGBM feature selection method, a high-precision normal performance prediction model of wind turbine is established based on BiLSTM.Then, the state performance index of the fan is determined by the sliding window algorithm, and the index threshold is determined by statistical interval estimation method.Finally, the real fault data of the fan is used to carry out the early warning experiment of the abnormal working condition of the whole wind turbine, which verifies the effectiveness of the method.
|
Received: 31 May 2023
Published: 26 September 2024
|
|
|
|
|
[4] |
马然, 栗文义, 齐咏生. 风电机组健康状态预测中异常数据在线清洗 [J]. 电工技术学报, 2021, 36(10): 2127-2139.
|
[6] |
胡阳, 乔依林. 基于置信等效边界模型的风功率数据清洗方法 [J]. 电力系统自动化, 2018, 42(15): 18-23.
|
[7] |
沈小军, 付雪姣, 周冲成, 等. 风电机组风速-功率异常运行数据特征及清洗方法 [J]. 电工技术学报, 2018, 33(14): 3353-3361.
|
[11] |
RENSTRM N, BANGALORE P, HIGHCOCK E. System-wide anomaly detection in wind turbines using deep autoencoders [J]. Renewable Energy, 2020, 157: 647-659.
|
[3] |
马良玉, 程善珍. 基于支持向量数据描述和XGBoost的风电机组异常工况预警研究 [J]. 电工技术学报, 2022, 37(13): 3241-3249.
|
[2] |
GAO Z W, SHENG S W. Real-time monitoring, prognosis, and resilient control for wind turbine systems [J]. Renewable Energy, 2018,116:199-208.
|
[5] |
朱倩雯, 叶林, 赵永宁, 等. 风电场输出功率异常数据识别与重构方法研究 [J]. 电力系统保护与控制, 2015, 43(3): 38-45.
|
[1] |
吕文春, 马剑龙, 陈金霞, 等. 风电产业发展现状及制约瓶颈 [J]. 可再生能源, 2018, 36(8): 1214-1218.
|
[10] |
何群, 尹飞飞, 武鑫, 等. 基于长短期记忆网络的风电机组齿轮箱故障预测 [J]. 计量学报, 2020, 41(10): 1284-1290.
|
[16] |
李占山, 姚鑫, 刘兆赓, 等. 基于LightGBM的特征选择算法 [J]. 东北大学学报(自然科学版), 2021, 42(12): 1688-1695.
|
[19] |
马良玉, 孙佳明, 於世磊, 等. 基于DBSCAN和SDAE的风电机组异常工况预警研究 [J]. 动力工程学报, 2021, 41(9): 786-793.
|
|
MA L Y, CHENG S Z. Abnormal state early warning of wind turbine generator based on support vector data description and XGboost. [J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3241-3249.
|
|
MA R, LI W Y, QI Y S. Online cleaning of abnormal data for the prediction of wind turbine health condition [J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2127-2139.
|
|
HU Y, QIAO Y L. Wind power data cleaning method based on confidence equivalent boundary model [J]. Automation of Electric Power Systems, 2018, 42(15): 18-23.
|
|
SHEN X J, FU X J, ZHOU C C, et al. Characteristics of outliers in wind speed-power operation data of wind turbines and its cleaning method [J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3353-3361.
|
[9] |
娄建楼, 胥佳, 陆恒, 等. 基于功率曲线的风电机组数据清洗算法 [J]. 电力系统自动化, 2016, 40(10): 116-121.
|
|
HE Q, YIN F F, WU X, et al. Fault prediction of wind turbine gearbox based on long short-term memory network. [J]. Acta Metrologica Sinica, 2020, 41(10): 1284-1290.
|
|
HE Q, WANG H, JIANG G Q, et al. Research of wind turbine main bearing condition monitoring based on correlation PCA and ELM. [J]. Acta Metrologica Sinica, 2018, 39(1): 89-93.
|
|
MEI Y, LI X, HU Z C, et al. Identification and cleaning of wind power data methods based on control principle of wind turbine generator system [J]. Journal of Chinese Society of Power Engineering, 2021, 41(4): 316-322.
|
[15] |
崔恺, 许宜菲, 李雪松, 等. 基于广义回归神经网络的风电机组性能预测模型及状态预警 [J]. 科学技术与工程, 2020, 20(32): 13220-13228.
|
|
LI Z S, YAO X, LIU Z G, et al. Feature selection algorithm based on LightGBM [J]. Journal of Northeastern University(Natural Science), 2021, 42(12): 1688-1695.
|
|
LV W C, MA J L, CHEN J X, et al. Current situation and restriction bottleneck of development of wind power industry [J]. Renewable Energy Resources, 2018, 36(8): 1214-1218.
|
|
ZHU Q W, YE L, ZHAO Y N, et al. Methods for elimination and reconstruction of abnormal power data in wind farms [J]. Power System Protection and Control, 2015, 43(3): 38-45.
|
[13] |
梅勇, 李霄, 胡在春, 等. 基于风电机组控制原理的风功率数据识别与清洗方法 [J]. 动力工程学报, 2021, 41(4): 316-322.
|
[17] |
YANG S M, YUAN A J, YU Z Q. A novel model rased on CEEMDAN, IWOA, and BiLSTM for ultra-short-term wind power forecasting [J]. Environmental Science and Pollution Research, 2023,30(5): 11689-11705.
|
|
MA L Y, SUN J M, YU S L, et al. DBSCAN and SDAE-based abnormal condition early warning for a wind turbine unit [J]. Journal of Chinese Society of Power Engineering, 2021, 41(9): 786-793.
|
[8] |
WANG Z, WANG L, HUANG C. A Fast Abnormal Data Cleaning Algorithm for Performance Evaluation of Wind Turbine [J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 5006512.
|
|
LOU J L, XU J, LU H, et al. Wind turbine data-cleaning algorithm based on power curve [J]. Automation of Electric Power Systems, 2016, 40(10): 116-121.
|
[12] |
何群, 王红, 江国乾, 等. 基于相关主成分分析和极限学习机的风电机组主轴承状态监测研究 [J]. 计量学报, 2018, 39(1): 89-93.
|
[14] |
OHADI N, KAMANDI A, SHABANKHAH M, et al. Sw-dbscan: A grid-based dbscan algorithm for large datasets[C]// IEEE. 2020 6th International Conference on Web Research (ICWR). 2020: 139-145.
|
|
CUI K, XU Y F, LI X S, et al. Wind turbine performance prediction model and early warning of abnormal condition based on GRNN [J]. Science Technology and Engineering, 2020, 20(32): 13220-13228.
|
[18] |
AHMAD M A, HAO M R, ISMAIL R M T R, et al. Model-free wind farm controlbased on random search[C]// IEEE. 2016 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS). 2016: 131-134.
|
|
|
|