|
|
Study on On-site Reproduction Method of Shipborne Miniature Ga-In Eutectic Fixed Point |
ZHU Xingfu1,PAN Jiang1,WANG Guangyao2,DIAO Fuguang2,SUN Jianping2,LI Ting2,WANG Pengyu1 |
1. College of Metrology & Measurement Engineering,China Jiliang University, Zhejiang Hangzhou 310018, China
2. National Institute of Metrology, Beijing 100029, China |
|
|
Abstract Application of fixed point thermometry technology to the field calibration of shipbrone sensors is a key strategy for achieving flattening in temperature measurements and enhancing the accuracy of oceanic temperature measurements. The fixed points defined by ITS90 in the temperature from -5℃ to 35℃ is inadequate, which blocks the accuracy improvement of the marine NTC thermistors. A new miniature Ga-In eutectic fixed point was developed, and the reproducibilities of the fixed point in temperature controlled box and ambient environment were investigated. Two methods including the tangent intersection method and cubic polynomial fitting were used to obtain the values of the temperature plateaus. The results showed that the reproducibility of the miniature Ga-In eutectic fixed point is better than 1mK. In order to obtain better performance, the miniature Ga-In eutectic fixed point should be kept in solid state at temperature below its melting point. Using the tangent intersection method, the phase transition temperature of the miniature Ga-In eutectic fixed point is determined to be 15.6549℃,with an expanded uncertainty of 1.54mK(k=2).
|
|
|
|
|
|
[1] |
韩林生, 王祎. 全球海洋观测系统展望及对我国的启示[J]. 地球科学进展, 2022, 37(11): 1157-1164.
|
|
WANG A J, ZHAO Z Y, ZHANG C, et al. The Stability Evaluation of Marine Environmental Parameter Monitoring Sensors[J]. Ocean Development and Management. 2022, 39(12): 115-120.
|
[4] |
任强, 于非, 魏传杰, 等. 温盐深测量仪(CTD)资料质量对比分析[J]. 海洋科学集刊, 2016(1): 288-295.
|
|
HAN L H, WANG Y. Prospect of Global Ocean Observing System and enlightenment to China[J]. Advances In Earth Science, 2022, 37(11): 1157-1164.
|
[3] |
王军成, 孙继昌, 刘岩, 等. 我国海洋监测仪器装备发展分析及展望[J]. 中国工程科学, 2023, 25(3): 42-52.
|
[5] |
高占科, 袁玲玲, 江帆. 海洋温度计量校准比对结果分析[J]. 计量学报, 2022, 43(2): 268-273.
|
|
GAO Z K, YUAN L L, JIANG F. Analysis of Results about the Comparison of Marine Temperature Calibration[J]. Acta Metrologica Sinica. 2022, 43(2): 268-273.
|
[6] |
王爱军, 赵卓英, 张川, 等. 海洋环境参数监测传感器的稳定性评价研究[J]. 海洋开发与管理, 2022, 39(12): 115-120.
|
[7] |
吴晓芬, 周慧, 曹敏杰, 等. 船载CTD仪与自动剖面浮标观测资料质量初探[J]. 海洋与湖沼, 2019, 50(2): 278-290.
|
[8] |
任国兴, 王晓影, 杜立彬. 高精度快响应海洋测温系统设计[J]. 仪表技术与传感器, 2011(2): 45-47.
|
[9] |
王博阳, 曾凡超, 傅承玉, 等. 基于微型镓固定点的精密铂电阻温度计原位校准的研究[J]. 计量学报, 2022, 43(2): 210-214.
|
[10] |
曾佳旭, 潘江, 孙建平, 等. 微型双温度固定点容器研制[J]. 计量学报, 2021, 42(4): 458-462.
|
[19] |
杨月, 陈乐, 孙建平, 等. 溴苯熔点研制及复现方法研究[J]. 计量学报, 2022, 43(2): 157-162
|
[2] |
ALLAN R P, HAWKINS E, BELLOUIN N, et al. Summary For Policymakers[R]. IPCC(2021),2021.
|
|
WANG J C, SUN J C, LIU Y, et al. Research Progress and Prospect of Marine Monitoring Instruments and Equipment in China [J]. Strategic Study of CAE, 2023, 25(3): 42-52.
|
|
Ren Q, Yu F, Wei C J, et al. Comparison and Analysis on Conductivity-Temperature-Depth System (CTD) Data Quality[J]. Studia Marina Sinica, 2016(1): 288-295.
|
|
WU X F, ZHOU H, CAO M J, et al. Preliminary Quality Discussion Between Ship-Based CTD and Profiling Floats Observational Data[J]. Oceanologia Et Limnologia Sinica. 2019, 50(2): 278-290.
|
|
REN G X, WANG X Y, DU L B. Design of High-precision and Fast-response Temperature Measurement System for Ocean[J]. Instrument Technique and Sensor, 2011(2): 45-47.
|
|
WANG B Y, ZENG F C, FU C Y, et al. Study on In-situ Calibration of Precision Platinum Resistance Thermometer Based on Micro Gallium Fixed-point[J]. Acta Metrologica Sinica. 2022, 43(2): 210-214.
|
|
ZENG J X, PAN J, SUN J P, et al. Development of Miniature Double Temperature Fixed Point Cell[J]. Acta Metrologica Sinica, 2021, 42(4): 458-462.
|
|
SUN J P, ZENG F C, ZHANG L, et al. Onsite Calibration of the Precision Industrial Platinum Resistance Thermometer Based on Gallium and Gallium-based Small-size Eutectic Points[J]. Acta Metrologica Sinica, 2015, 36(z1): 32-36.
|
[13] |
文平, 郝小鹏, 孙建平, 等. 基于微型镓基共晶固定点的温度传感器在轨校准方法研究[J]. 计量学报, 2019, 40(4): 595-602.
|
[14] |
BURDAKIN A, KHLEVNOY B, SAMOYLOV M, et al. Development of gallium and gallium-based small-size eutectic melting fixed points for calibration procedures on autonomous platforms[J]. International Journal of Thermophysics, 2009, 30: 20-35.
|
|
RUAN Y M, LING Z Q, LI T, et al. Exploration of Bi-In-Sn Alloy Melting Temperature Plateau Optimization[J]. Acta Metrologica Sinica. 2022, 43(2): 176-183.
|
|
YANG L, BIAN X F, PAN S P, et al. Cluster separation phenomena in liquid Ga-In alloys[J]. Acta Physica Sinica, 2012, 61(3): 314-321.
|
[11] |
BURDAKIN A, KHLEVNOY B, SAMOYLOV M, et al. Melting points of gallium and of binary eutectics with gallium realized in small cells[J]. Metrologia, 2008, 45(1): 75.
|
[12] |
孙建平, 曾凡超, 张琳, 等. 微型镓基共晶点现场精密铂电阻温度计校准研究[J]. 计量学报, 2015, 36(z1): 32-36.
|
[15] |
阮一鸣, 凌忠钱, 李婷, 等. Bi-In-Sn 合金熔化温坪优化方法探索[J]. 计量学报, 2022, 43(2): 176-183.
|
[16] |
杨磊, 边秀房, 潘少鹏, 等. 液态Ga-In合金中的团簇分离现象[J]. 物理学报, 2012, 61(3): 314-321.
|
[17] |
LI T, SUN J, WANG H, et al. Development and precise determination of high reproducibility Ga-In eutectic temperature fixed point[J]. Journal of Alloys and Compounds, 2022, 903: 163781
|
[18] |
KRAPF G, SCHALLES M, FR?HLICH T. Estimation of fixed-point temperatures — A practical approach[J]. Measurement, 2011, 44(2): 385-390.
|
|
YANG Y, CHEN L, SUN J P, et al. Study on the Development and Reproducibility of Bromobenzene Melting Point[J]. Acta Metrologica Sinica, 2022, 43(2): 157-162.
|
|
WEN P, HAO X P, SUN J P, et al. On-orbit Calibration of Temperature Sensor Based on Miniature Gallium-based Alloy Fixed Point[J]. Acta Metrologica Sinica. 2019, 40(4): 595-602.
|
[20] |
孙建平, 邱萍, 张金涛. 微量杂质对锌凝固点影响的评估[J]. 计量学报, 2010, 31(3): 223-228.
|
|
SUN J P, QIU P, ZHANG J T. The Evaluation of the Influence of lmpurities on the Freezing Point of Zinc [J]. Acta Metrologica Sinica., 2010, 31(3): 223-228.
|
|
|
|