|
|
Study on Flow Characteristics of Multiphase Flow in Internal Transport of Hydrate Phase Transition |
TAO Junao1,ZHANG Huoming1,CHEN Guoqing2,LU Pinglan3 |
1. Zhejiang Provincial Key Laboratory of Flow Metering Technology, China Jiliang University, Hangzhou, Zhejiang,310018, China
2. Zhejiang Academy of Special Equipment Science, Hangzhou, Zhejiang,310020, China
3. Engineering Training Center, China Jiliang University, Hangzhou, Zhejiang, 310018, China |
|
|
Abstract The natural hydrate will decompose due to the change of pressure during the lifting process of the flexible riser, and the phase change process will flow from the solid-liquid two-phase flow at the bottom of the riser to the gas-liquid-solid three-phase flow at the top of the riser. Based on the computational fluid dynamics (CFD) method, the catenary linear flexible riser model was established by FLUENT, and the Euler multiphase flow model was used to simulate the hydrate decomposition process by combining the UDF source term, and the flow characteristics of hydrate in the riser under different influencing parameters were obtained. The results show that the increase of particle volume fraction and suspension angle can increase the gas holding capacity in the riser, thereby reducing the energy consumption of hydrate transportation. The increase of inlet speed can increase the particle velocity at the outlet of the riser, so that the gas holding rate in the pipeline is reduced, and the increase of speed will increase the energy consumption of the required pump. The increase of particle volume fraction increases the gas holding rate in the riser, and the energy consumption of the required pump first decreases and then increases, there is an optimal value for particle volume fraction. In the actual project, the purpose of reducing energy consumption can be achieved by adjusting the relevant parameters according to needs.
|
Received: 17 October 2023
Published: 05 September 2024
|
|
|
|
|
[13] |
ISTOMIN V A, 梁杰. 天然气水合物矿藏的分类: 从水合物获取天然气产品的重要环节[J]. 海洋地质动态, 2005(9): 38-42.
|
[2] |
赵奎, 贺保卫, 崔海朋, 等. 南海可燃冰开采环境安全评价与数据采集监测方案[J]. 科学技术与工程, 2020, 20(10): 3957-3961.
|
[11] |
陈科昊, 王宗勇. 网格类型对管内旋流特性数值计算的影响[J]. 沈阳化工大学学报, 2020, 34(4): 363-368.
|
|
ZHANG F N, YU K Y, GUO J H, et al. Simulation design of flow switch based on moving grid and UDF technology[J]. Instrumentation Technology and Sensors, 2020(6): 87-91.
|
[12] |
高晖, 郭烈锦, 张西民. 螺旋管内气液固三相流颗粒相分布规律[J]. 工程热物理学报, 2004(1):69-72.
|
[14] |
JOSHI S V. Experimental investigasion and modeling of gas hydrate formation in high water cut producing oil pipelines[D]. Golden: Colorado School of Mines, 2012.
|
[4] |
刘艳军, 唐孝蓉, 胡坤. 天然气水合物浆体分解对其在垂直管中流动特性影响的研究[J]. 化学通报, 2018, 81(3): 267-273.
|
[6] |
赵金洲, 李海涛, 张烈辉, 等. 海洋天然气水合物固态流化开采大型物理模拟实验[J]. 天然气工业, 2018, 38(10): 76-83.
|
[1] |
汤晓勇, 陈俊文, 郭艳林, 等. 可燃冰开发及试采技术发展现状综述[J]. 天然气与石油, 2020, 38(1): 7-15.
|
[3] |
周守为, 赵金洲, 李清平, 等. 全球首次海洋天然气水合物固态流化试采工程参数优化设计[J]. 天然气工业, 2017, 37(9): 1-14.
|
|
ZHAO J Z, LI H T, ZHANG L H, et al. Large-scale physical simulation experiment of solid fluidized exploitation of marine gas hydrate[J]. Natural Gas Industry, 2018, 38(10): 76-83.
|
[17] |
张发年, 于延凯, 郭建华等. 基于动网格与UDF技术的流量开关仿真设计[J]. 仪表技术与传感器, 2020(6): 87-91.
|
[18] |
徐海良, 谢秋敏, 吴波, 等. 天然气水合物绞吸式开采软管内颗粒分布分析[J]. 计算机仿真, 2015, 32(1): 127-131.
|
[5] |
谢秋敏. 海底天然气水合物绞吸式开采管道水力输送规律研究[D]. 长沙: 中南大学, 2014.
|
[8] |
TING H, LI C J, JIA W L, et al. Application of equations of state to predict methane solubility under hydrate-liquid water two-phase equilibrium[J]. Fluid Phase Equilibria, 2016, 427: 35-45.
|
[10] |
BAHTUI A, ALFANO G, BAHAI H. On the multi-scale computation of un-bonded flexible risers[J]. Engineering Structures, 2010, 32(8): 2287-2299.
|
|
CHEN K H, WANG Z Y. The influence of mesh type on the numerical calculation of swirl characteristics in tubes[J]. Journal of Shenyang University of Chemical Technology, 2020, 34(4): 363-368.
|
|
GAO H, GUO L J, ZHANG X M. Phase distribution of gas-liquid-solid three-phase flow particles in spiral tubes[J]. Journal of Engineering Thermophysics, 2004(1): 69-72.
|
|
ISTOMIN V A, LIANG J. Classification of Natural Gas Hydrate Deposits: An Important Link in Obtaining Natural Gas Products from Hydrate[J]. Marine Geological Dynamics, 2005(9): 38-42.
|
[15] |
DZYUBA A V, ZEKTSER I S. Variations in submarine groundwater runoff as a possible cause of decomposition of marine methane-hydrates in the Artcic[J]. Water Resour, 2013, 40: 74-83.
|
[19] |
LI L, XU H L, YANG F Q. Three-phase flow of submarine gas hydrate pipe transport[J]. Journal of Central South University, 2015, 22(9): 3650-3656.
|
|
ZHAO K, HE B W, CUI H P, et al. Environmental safety assessment and data collection and monitoring scheme for combustible ice mining in the South China Sea[J]. Science, Technology and Engineering, 2020, 20(10): 3957-3961.
|
|
ZHOU S W, ZHAO J Z, LI Q P, et al. The worlds first optimization design of marine gas hydrate solid-state fluidized test production engineering parameters[J]. Natural Gas Industry, 2017, 37(9): 1-14.
|
[9] |
LI C J, HUANG T. Simulation of gas bubbles with gas hydrates rising in deep water[J]. Ocean Engineering, 2016, 112: 16-24.
|
[16] |
邱奕龙. 海洋非成岩天然气水合物固态流化开采过程分解规律研究[D]. 成都: 西南石油大学, 2018.
|
|
TANG X Y, CHEN J W, GUO Y L, et al. A review of the development status of combustible ice development and trial mining technology[J]. Gas and Oil, 2020, 38(1): 7-15.
|
|
LIU Y J, TANG X R, HU K, et al. Study on the effect of gas hydrate slurry decomposition on its flow characteristics in vertical tubes[J]. Chemical Bulletin, 2018, 81(3): 267-273.
|
[7] |
BERROUK S A, JIANG P, SAFIYULLAH F, et al. CFD modelling of hydrate slurry flow in a pipeline based on Euler-Euler approach[J]. Progress in Computational Fluid Dynamics, an International Journal, 2020, 20 (3):156-168.
|
|
XU H L, XIE Q M, WU B, et al. Analysis of particle distribution in natural gas hydrate cutter suction mining hose[J]. Computer Simulation, 2015, 32(1): 127-131.
|
|
|
|