|
|
Research on Battery Capacity Decline Prediction Based on Improved Algorithm of Traceless Particle Filtering |
GUO Ruijun1,XIN Yongqiang1,YANG Jianfeng2 |
1. Gansu Measurement Research Institute, Lanzhou, Gansu 730070, China
2. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China |
|
|
Abstract In order to improve the accuracy and applicability of battery capacity prediction, an improved algorithm based on traceless particle filtering is proposed. In order to reduce the observation error of the filtering iteration process, a support vector regression algorithm is introduced to improve it. Since the kernel function and penalty factor in the support vector regression algorithm are difficult to determine, it is proposed to use the optimization ability of the genetic algorithm to solve it, forming a model improved by the genetic algorithm and support vector regression. The performance of this fusion model is evaluated and compared with UPF-SVR and UPF-RVR, and the experimental results show that the mean absolute error EMAand root mean square error SRMSE of the fusion model prediction results are lower than 2.0% and 2.5%, respectively, and the prediction accuracy is higher compared with the other models, and at the same time, the prediction level and convergence are significantly better than other models, which is more effective and feasible.
|
Received: 29 November 2023
Published: 05 September 2024
|
|
Fund:Research on Architecture and Control Strategy of Energy Router in High Photovoltaic Penetration Distribution Network |
|
|
|
[5] |
汪秋婷, 戚伟. 锂电池非线性退化模型和多目标储能优化[J]. 控制工程, 2022, 29(8): 1360-1369.
|
[6] |
李超然, 肖飞, 樊亚翔, 等. 基于门控循环单元神经网络和Uber-M估计鲁棒卡尔曼滤波融合方法的锂离子电池荷电状态估算方法李超然[J]. 电工技术学报, 2020, 35(9): 2051-2062
|
[10] |
吴忠强, 胡晓宇. 基于STPF的SOC估计及在多锂电池均衡中的应用[J]. 电子测量与仪器学报, 2022, 36(2): 235-244.
|
[11] |
晋殿卫, 顾则宇, 张志宏. 锂电池健康度和剩余寿命预测算法研究[J]. 电力系统保护与控制, 2023, 51(1): 122-130.
|
|
WU Z Q, HU X Y, MA B Y, et al. Remaining service life prediction of lithium batteries based on PF-LSTM[J]. Acta Metrologica Sinica, 2023, 44(6): 939-947.
|
|
ZHANG Z Q, MA S L, JIANG X Y, et al. SOC estimation method for lithium battery based on local model network[J]. Chinese Journal of Scientific Instrument, 2023, 44(7): 161-171.
|
|
XI J N, NI Y L, ZHU C B. Remaining life prediction of lithium battery based on improved support vector regression [J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3693-3704.
|
[7] |
WEI M, GU H, YE M, et al. Remaining useful life prediction of lithium-ion batteries based on Monte Carlo Dropout and gated recurrent unit[J]. Energy Reports, 2021, 7: 2862-2871.
|
[9] |
赵珍, 庞晓琼, 董渊昌. 多健康指标的锂电池剩余使用寿命区间预测[J]. 中北大学学报: 自然科学版, 2023, 44(3): 263-271.
|
[12] |
刘琼, 张豹. 基于GBDT算法的锂电池剩余使用寿命预测[J]. 电子测量与仪器学报, 2022, 36(10): 166-172.
|
[14] |
WANG F K, AMOGNE Z E, TSENG C, et al. A hybrid method for online cycle life prediction of lithium‐ion batteries[J]. International Journal of Energy Research, 2022, 46(7): 9080-9096.
|
[18] |
黄凯, 丁恒, 郭永芳, 等. 基于数据预处理和长短期记忆神经网络的锂离子电池寿命预测[J]. 电工技术学报, 2022, 37(15): 3753-3766.
|
[20] |
苗强, 张恒, 张新, 等. 基于多隐藏状态分数布朗运动的设备剩余寿命预测方法: CN201810643898.2[P]. 2018-11-16.
|
[1] |
吴忠强, 胡晓宇, 马博岩, 等. 基于PF-LSTM的锂电池剩余使用寿命预测[J]. 计量学报, 2023, 44(6): 939-947.
|
|
LI C R, XIAO F, FAN Y X, et al. Estimation of lithium-ion battery charge state based on the fusion of gated recurrent unit neural network and Uber-M estimation robust Kalman filtering method by Chaoran Li[J]. Journal of Electrotechnology, 2020, 35(9): 2051-2062.
|
|
LIU Q, ZHANG B. Remaining service life prediction of lithium battery based on GBDT algorithm [J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(10): 166-172.
|
|
ZHAO Q F, CAI Y P, WANG X J. Residual life prediction of lithium batteries under different discharge intervals [J]. China Measurement & Test, 2023, 49(3): 159-165.
|
|
HAO K Q, L Z Q, DI R H, et al. Residual life prediction of lithium battery based on whale algorithm optimized long and short-term memory neural network[J]. Science Technology and Engineering, 2022, 22(29): 12900-12908.
|
|
HUANG K, DING H, GUO Y F, et al. Lithium-ion battery life prediction based on data preprocessing and long and short-term memory neural networks [J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3753-3766.
|
|
ZHANG X, FENG H L. Remaining life prediction of lithium battery based on discharge process information [J]. Acta Metrologica Sinica, 2022, 43(11): 1492-1500.
|
|
WANG Q T, QI W. Nonlinear degradation model and multi-objective energy storage optimization for lithium batteries[J]. Control Engineering of China, 2022, 29(8): 1360-1369.
|
|
JIN D W, GU Z Y, ZHANG Z H. Research on lithium battery healthiness and remaining life prediction algorithms [J]. Power System Protection and Control, 2023, 51(1): 122-130.
|
[17] |
JIANG B, GENT W E, MOHR F, et al. Bayesian learning for rapid prediction of lithium-ion battery-cycling protocols[J]. Joule, 2021, 5(12): 3187-3203.
|
[2] |
张振强, 马思乐, 姜向远, 等. 基于局部模型网络的锂电池SOC估计方法[J]. 仪器仪表学报, 2023, 44(7): 161-171.
|
[8] |
DING G, WANGW, ZHU T. Remaining useful life prediction for lithium-ion batteries based on CS-VMD and GRU[J]. IEEE Access, 2022, 10: 89402-89413.
|
|
ZHANG H, HU C H, DU D B, et al. Residual life prediction of lithium battery based on Bi-LSTM network under multi-state influence [J]. Acta Electronica Sinica, 2022, 50(3): 619-624.
|
|
HE Y J, LIU Y F, BIAN H D, et al. Informer-based battery charge state estimation and its sparse optimization method[J]. Acta Electronica Sinica, 2023, 51(1): 50-56.
|
[4] |
XUE Q, SHEN S Q, LI G, et al. Remaining useful life prediction for lithium-ion batteries based on capacity estimation and Box-Cox transformation[J]. IEEE Transactions on Vehicular Technology, 2020, 69 (12): 14765 - 14779.
|
|
WU Z Q, HU X Y. STPF-based SOC estimation and its application in multi-lithium battery equalization[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(2): 235-244.
|
[16] |
郝可青, 吕志刚, 邸若海, 等. 基于鲸鱼算法优化长短时记忆神经网络的锂电池剩余寿命预测[J]. 科学技术与工程, 2022, 22(29): 12900-12908.
|
[3] |
徐佳宁, 倪裕隆, 朱春波. 基于改进支持向量回归的锂电池剩余寿命预测[J]. 电工技术学报, 2021, 36(17): 3693-3704.
|
|
ZHAO Z, PANG X Q, DONG Y C. Prediction of recession interval of lithium battery remaining use capacity with multiple health indicators[J]. Journal of North University of China: Natural Science Edition, 2023, 44(3): 263-271.
|
[15] |
赵沁峰, 蔡艳平, 王新军. 锂电池在不同放电区间下的剩余寿命预测[J]. 中国测试, 2023, 49(3): 159-165.
|
[21] |
张翾, 冯海林. 基于放电过程信息的锂电池剩余寿命预测[J]. 计量学报, 2022, 43(11): 1492-1500.
|
[13] |
张浩, 胡昌华, 杜党波, 等. 多状态影响下基于Bi-LSTM网络的锂电池剩余寿命预测方法[J]. 电子学报, 2022, 50(3): 619-624.
|
[19] |
何滢婕, 刘月峰, 边浩东, 等. 基于Informer的电池荷电状态估算及其稀疏优化方法[J]. 电子学报, 2023, 51(1): 50-56.
|
|
|
|