|
|
Structure Improvement and Test Analysis of Water Calorimeter Based on Micro-channel Cooling |
WEN Peng,CHEN Lianzhong,CHEN Ding,CHEN Zhiming |
China Academy of Aerospace Aerodynamics, Beijing 100074, China |
|
|
Abstract The aerodynamic heating environment encountered during hypersonic flight or reentry from space is severe in which the highest temperature can even reach 10000℃, resulting in a failure of commonly used calorimeterts showing great heat flux testing performance and thermal load viability .An new water calorimeter based on micro-channel cooling was developed in order to solve the problem of continuous and accurate measurement of high heat flux on the surface of high supersonic aircraft in ground test, which was prepared by 3D printing. Based on the numerical simulation, the size and configuration of the new water calorimeter was optimized. Comparing to traditional water calorimeter, the temperature rise of the core area is reduced by 50 percent under the same cold-wall heat flux, which illustrates the test and survival ability of micro-channel water calorimeter in extreme thermal environment. Finally, the arc heated jet test was carried out, which shows that the micro-channel water calorimeter could measure pressure and temperature and heat flow parameters synchronously with great local response characteristics, which could realize the integrated recognition of high temperatures flow field parameters. Furthermore, its maximum heat flow measurement range is over 18MW/m2, and the absolute deviation and average deviation of the sensor is less than 3.44% and ±1.72% respectively.
|
Received: 12 October 2023
Published: 04 July 2024
|
|
|
|
|
[1] |
刘初平. 气动热与热防护试验热流测量[M]. 北京: 国防工业出版社, 2013.
|
[13] |
涂建强,刘德英,陈海群.长时间隔热材料环境的稳态热流测量方法[J].宇航材料工艺,2008(2):76-80.
|
[19] |
李涤尘, 贺健康, 田小永, 等. 增材制造: 实现宏微结构一体化制造[J].机械工程学报, 2013, 49(6): 129-135.
|
[8] |
杨庆涛, 白菡尘, 张涛, 等. 隔热结构对塞块式量热计热流测量的影响[J]. 实验流体力学, 2014, 28(5): 92-98.
|
[3] |
喻成璋, 刘卫华. 高超声速飞行器气动热预测技术研究进展[J]. 航空科学技术, 2021, 32(2): 14-21.
|
[5] |
许考, 陈连忠. 导管内塞式量热计热流测量实验及数值模拟研究[J]. 实验流体力学,2015,29(2):84-89.
|
[2] |
MONTGOMERY P A, SMITH D M, SHEELEY J M. The quest for higher total pressures: Justification and current development efforts for a higher pressure arc-jet facility[R]. AIAA 2004-6815, 2004.
|
|
YU C Z,LIU W H.Research status of aeroheating prediction technology for hypersonic aircraft[J]. Aeronautical Science&Technology,2021,32(2):14-21.
|
[6] |
高庆华, 郄殿福. 热流测量技术发展综述[J]. 航天器环境工程, 2020, 37(7): 218-227.
|
[7] |
陈连忠. 塞块式瞬态量热计测量结果修正方法的研究[J]. 计量学报, 2008, 29(4): 317-319.
|
|
YANG Q T, BAI H Z, ZHANG T, et al. Effects of adiabatic structure on heat flux measurement using a slug calorimeter [J]. Journal of Experiments in Fluid Mechanics, 2014, 28(5): 92-98.
|
[9] |
朱新新, 杨庆涛, 王辉, 等. 塞块式量热计隔热结构的改进与试验分析[J]. 试验流体力学, 2018, 32(6): 34-40.
|
[10] |
李文浩, 赵玲, 田宁, 等. 塞块式量热计长时间变工况热流测试[J]. 工程热物理学报, 2021, 42(8): 2132-2140.
|
[11] |
王辉, 吴东, 朱新新, 等. 基于混合传热模态的瞬态热流测试方法研究[J]. 实验流体力学, 2021, 35(4): 92-97.
|
[12] |
CHELSEYC, MORROW, ANDREW J B. Uncertainty analysis of slug calorimeters in the HyMETS arc-jet facility[R]. AIAA 2023-4038, 2023.
|
[14] |
陈德江,王国林,曲杨,等.气动热试验中稳态热流测量技术研究[J].实验流体力学, 2005,19(1):75-78.
|
[20] |
GARY H. The used of nitrogen as a test gas for Arnold Engineering Development Centers huels H2 arc heater facility[R]. AIAA 2009-4091, 2009.
|
[21] |
周凯, 欧东斌, 张仕忠, 等. 热流量热计传热特性电弧风洞试验及数值模拟[J]. 气体物理, 2022, 7(4): 83-90.
|
|
XU K, CHEN L Z. Experimental and numerical simulation studies on heat flux measurement for slug calorimeters in the conduit [J]. Journal of Experiments in Fluid Mechanics, 2015, 29(2): 84-89.
|
|
CHEN L Z. A calibration method on the result of transient plug type heat fluxmeter[J]. Acta Metrologica sinica, 2008, 29(4): 317-319.
|
|
LI W H, ZHAO L, TIAN N, et al. Investigation of Slug Calorimeter for meeting multi invariable heat flux environment [J]. Journal of Engineering Thermophysics, 2021, 42(8): 2132-2140.
|
|
CHEN D J, WANG G L, QU Y, et al. The research of the steady-state heat-flux measurement technique for aerothermodynamic experiment[J]. Journal of Experiments in Fluid Mechanics,2005,19(1):75-78.
|
[16] |
JOSEPH M, MATTHEW R. Three-dimensional printing using a photo initiated polymer[J]. Journal of Chemical Education, 2010, 87(5): 512-514.
|
[17] |
史永升, 张李超, 白宇, 等. 3D打印技术的发展及其软件实现[J]. 中国科学, 2015, 45(2): 197-203.
|
|
SHI Y S, ZHANG L C, BAI Y, et al. The development of 3D printing technology and its software implementation[J]. Science China Press, 2015, 45(2): 197-203.
|
|
DU Y L, SUN F F, YUAN G, et al. Current Status of Materials for Three-dimensional printing[J]. Journal of Xuzhou Institute of Technology, 2014, 29(1): 20-24.
|
[4] |
李锋. 疏导式热防护[M]. 北京: 中国宇航出版社, 2017.
|
|
ZHU X X, YANG Q T, WANG H, et al. Improvement of heat insulation structure in the slug calorimeter and test analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 34-40.
|
[15] |
NAWAZ A, GORBUNOV S, TERRAZAS-SALINAS I, et al. Investigation of slug calorimeter gap influence for plasma stream characterization[R]. AIAA 2012-3186, 2012.
|
|
ZHOU K, OU D B, ZHANG S Z, et al. Experimental and numerical simulation of heat transfer characteristics for heat flux sensors in the arc heated wind tunnels[J]. Physics of Gases, 2022, 7(4): 83-90.
|
|
GAO Q H, QIE D F. The Development of heat flux measurement technology[J]. Spacecraft Environment Engineering, 2020, 37(7): 218-227.
|
|
WANG H, WU D, ZHU X X, et al. The study on transient heat flux measurement based on hybrid heat transfer models[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(4): 92-97.
|
[18] |
杜宇雷, 孙菲菲, 原光, 等. 3D打印材料的发展现状[J]. 徐州工程学报, 2014, 29(1): 20-24.
|
|
TU J Q, LIU D Y, CHEN H Q. Steady-state heat-flux measurement method for environment of long-time insulation materials[J]. Aeronspace Materials & Technology, 2008(2):76-80.
|
|
LI D C, HE J K, TIAN X Y, et al. Additive manufacturing: integrated fabrication of macro/structures[J]. Mech Eng, 2013, 49(6): 129-135.
|
|
|
|