|
|
Effects of the Variation of Poissons Ratio on the Calculation of Concrete Damage Based on Wave Velocity |
XU Jiahui,YANG Yu,LIU Heng,ZHOU Qiangbing |
School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China |
|
|
Abstract The method of calculating material damage using ultrasonic wave velocities are widely used, however the variation in Poissons ratio was often ignored in past researches. The effect of Poissons ratio variations on damage calculation of concrete based on ultrasonic wave velocities was investigated. Firstly, the Poissons ratio correction factor was introduced into the wave velocity-based damage calculation equation through theoretical analysis. Secondly, the necessity of considering Poissons ratio variations was verified by conducting axial compression tests on concrete column specimens. Finally, a Poissons ratio correction factor calculation method was proposed on the basis of the experimental data. The results show that the average relative error between the calculated value based on wave velocity and true value of concrete damage is up to 73% when the effect of Poisson’s ratio variation is ignored, and the error is reduced to 21% by applying the Poissons ratio correction factor. These findings suggest that it is advisable to include the Poissons ratio correction factor to improve the accuracy of the calculation when calculating concrete damage based on wave velocity.
|
Received: 25 June 2023
Published: 06 June 2024
|
|
|
|
|
|
YANG Y, BAO T, WANG Y, et al. Study on Determining Correction Distance of Ultrasonic Longitudinal Wave Transducers Used in Indirect Transmission Method[J]. Acta Metrologica Sinica, 2021, 42(6): 738-744.
|
|
ZHU J X, L B L, QIAO S, et al. Application of Primary Component Analysis and Multivariate Gaussian Bayesian Method on Intelligent Failure Diagnosis of Ultrasonic Flowmeter[J]. Acta Metrologica Sinica, 2020, 41(12): 1494-1499.
|
|
LUO Y Y, FENG Y Z, HAO L, et al. Application of Ultrasonic Method in Contact Stress Testing of Electric Connector[J]. Acta Metrologica Sinica, 2018, 39(1): 72-76.
|
[5] |
OHTSU M . Nondestructive Evaluation of Damaged Concrete due to Freezing and Thawing by Elastic-Wave Method[J]. Journal of Advanced Concrete Technology, 2005, 3(3):333-341.
|
|
YAO W J, LIU Y S, WANG T Y, et al. Performance Degradation and Microscopic Structure of Rubber/Concrete after Salt Freeze-thaw Cycles[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4294-4304.
|
|
YAO W J, PANG J Y. Performance Degradation and Microscopic Structure of Glazed Hollow Bead Insulation Normal Concrete after Exposure to High Temperature[J]. Acta Materiae Compositae Sinca, 2019, 36(12): 2932-2941.
|
|
DING Y N, ZHU H, LI D. Effect of Macro Steel Fiber on Permeability and Damage of Concrete under Uniaxial Compression[J]. Acta Materiae Compositae Sinica, 2019, 36(12): 2942-2949.
|
|
DING Y N, LI L Z, ZENG W. Fibers Effects on the Concrete Damage、Crack Tortuosity and Crack Recovery[J]. Acta Materiae Compositae Sinica, 2019, 36(10): 2439-2447.
|
|
HAN J J, LI Z L, TAN C, et al. Experimental Study on the Influence on Permeability of Concrete by Load Damage[J]. Concrete, 2019(9): 17-20.
|
[26] |
沈军, 谢怀勤, 侯涤洋. GF WRP管增强混凝土柱的轴压泊松比[J]. 复合材料学报, 2005,22(6): 120-124.
|
[27] |
胡琼, 宋灿, 邹超英. 再生混凝土力学性能试验[J]. 哈尔滨工业大学学报, 2009, 41(4): 33-36.
|
[29] |
马衍轩, 徐亚茜, 于霞, 等. 泡沫混凝土的负泊松比设计与静载力学特性研究[J]. 材料导报, 2021, 35(24): 24068-24074.
|
[3] |
骆燕燕, 冯郁竹, 郝良, 等. 超声波法在电连接器接触压力测试中的应用[J]. 计量学报, 2018, 39(1): 72-76.
|
[9] |
丁一宁, 李林泽, 曾伟. 纤维对混凝土的损伤、裂缝曲折度及裂缝恢复的影响[J]. 复合材料学报, 2019, 36(10): 2439-2447.
|
|
MAO Z H, ZHANG J C, LI Y Q, et al. Performance Degradation and Microscopic Structure of Reactive Powder Concrete after Exposure to High Temperature[J]. Journal of Building Materials, 2022, 25(12): 1225-1232.
|
|
WANG H L, LI S, ZHAO Y. Research on Blasting Damage Law of Initial Concrete Support under Cumulative Effect [J]. Engineering Blasting, 2021, 27(4): 29-33+50.
|
[14] |
王笑然, 王恩元, 刘晓斐, 等. 混凝土损伤演化声发射和超声波时-频-空联合响应[J]. 中国矿业大学学报, 2019, 48(2): 268-277.
|
|
DING Y N, LI S G, TIAN J T, et al. Quantitative Evaluation of Stress-induced Damage in Low-strength and High-strength Concrete by Impact-echo Method[J]. Water Power, 2019, 45(3): 120-124.
|
|
ZHAO D S, LIANG W G, ZHANG S L, et al. Experimental Study on Unloading Rate Effect of Confining Pressure on Dilatation Damage of Surrounding Rock in Salt Cavern Gas Storage[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S2): 3219-3228.
|
|
SUN M W, QIU X Q, GUAN X H, et al. Safety Threshold of Blasting Vibration Based on Different Discriminant Conditions[J]. Nonferrous Metals (Mining Section), 2021, 73(3): 32-36.
|
[19] |
闻磊, 梁旭黎, 冯文杰, 等. 冲击损伤砂岩动静组合加载力学特性研究[J]. 岩土力学, 2020, 41(11): 3540-3552.
|
|
ZHANG Y B, WANG K X, YAO X L, et al. Rock Damage Evaluation Based on Wave Velocity Field Imaging Technology[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2404-2417.
|
[24] |
程爱平, 张玉山, 戴顺意, 等. 胶结充填体超声波波速损伤演化试验[J]. 金属矿山, 2018(9): 41-46.
|
[32] |
LEMAITRE J, CHABOCHE J L. Mechanics of solid materials[M]. Cambridge:Cambridge university press, 1994.
|
|
LIU H Y, HU G. Problems in the Definition of Blasting Damage Variable and Their Discussions[J]. Blasting, 2003(3): 1-4.
|
[1] |
杨予, 包挺, 王毅, 等. 超声纵波换能器用于平测时的测距修正方法研究[J]. 计量学报, 2021, 42(6): 738-744.
|
[7] |
姚韦靖, 庞建勇. 玻化微珠保温混凝土高温后性能劣化及微观结构[J]. 复合材料学报, 2019, 36(12): 2932-2941.
|
[12] |
吴帅峰, 王戈, 袁东凯, 等. 爆破振动对新浇混凝土影响的试验研究[J]. 振动与冲击, 2017, 36(2): 39-44.
|
[17] |
周建华, 杨成祥, 孔瑞, 等. 真三轴压缩下硬岩破裂过程超声波演化特征[J]. 金属矿山, 2022(10): 10-15.
|
|
ZHU C Q, XIE G X, WANG L. Wave velocity evolution law and quantitative index of damage degree of soft coal[J]. Journal of China Coal Society, 2022, 47(7): 2609-2622.
|
[22] |
李和万, 张子恒, 王来贵, 等. 循环冷浸致煤样结构损伤的力学性质演化规律[J]. 煤炭学报, 2021, 46(S2): 770-776.
|
|
SONG C H, LI X L, WANG J G, et al. Experimental Study on the Effect of Pillar Blasting Mining on the Damage of Cemented Filling Body[J]. Gold Science and Technology, 2020, 28(4): 558-564.
|
|
HU Q, SONG C, ZOU C Y. Experimental Research on the Mechanical Properties of Recycled Concrete[J]. Journal of Harbin Institute of Technology, 2009, 41(4): 33-36.
|
|
MA Y X, XU Y Q, YU X, et al. Negative Poissons Ratio Design and Static Load Characteristics of Foam Concrete [J]. Materials Reports, 2021, 35(24): 24068-24074.
|
[34] |
LIU X F, WANG X R, WANG E Y, et al. Study on Ultrasonic Response to Mechanical Structure of Coal under Loading and Unloading Condition[J]. Shock and Vibration, 2017, 2017:7643451.
|
|
JIA P, ZHU P C, LI B, et al. Characteristics of Real-time Ultrasonic Wave during Uniaxial Compression of Rock[J]. Journal of Central South University (Science and Technology) , 2022, 53(10): 3967-3977.
|
[41] |
Standard A. Standard test method for poissons ratio at room temperature:ASTM E132-61[S].1984.
|
[2] |
朱建新, 吕宝林, 乔松, 等. 基于主成分分析及多维高斯贝叶斯的超声流量计故障智能诊断方法[J]. 计量学报, 2020, 41(12): 1494-1499.
|
[6] |
姚韦靖, 刘雨姗, 王婷雅, 等. 橡胶/混凝土盐冻循环后性能劣化及微观结构[J]. 复合材料学报, 2021, 38(12): 4294-4304.
|
[8] |
丁一宁, 朱昊, 李冬. 结构型钢纤维对单轴受压下混凝土渗透性及损伤的影响[J]. 复合材料学报, 2019, 36(12): 2942-2949.
|
[11] |
韩金家, 李宗利, 谭聪, 等. 荷载损伤对混凝土渗透性能影响试验研究[J]. 混凝土, 2019(9): 17-20.
|
[13] |
王海龙, 李帅, 赵岩. 累积效应下初支混凝土爆破损伤规律研究[J]. 工程爆破, 2021, 27(4): 29-33+50.
|
[16] |
赵德生, 梁卫国, 张胜利, 等. 盐穴储气库围岩扩容损伤的围压卸载速率效应试验研究[J]. 岩石力学与工程学报, 2022, 41(S2): 3219-3228.
|
[18] |
孙明武, 丘小强, 官旭晖, 等. 基于不同判别条件爆破振动安全阈值的研究[J]. 有色金属(矿山部分), 2021, 73(3): 32-36.
|
[21] |
朱传奇, 谢广祥, 王磊. 松软煤体波速演化规律与破坏程度量化指标[J]. 煤炭学报, 2022, 47(7): 2609-2622.
|
[23] |
宋春辉, 李祥龙, 王建国, 等. 矿柱爆破回采对胶结充填体损伤影响试验研究[J]. 黄金科学技术, 2020, 28(4): 558-564.
|
|
SHEN J, XIE H Q, HOU D Y. Poissons Ratio of GF WRP Tube Reinforced Concrete under Axial Compression[J]. Acta Materiae Compositae Sinica, 2005, 22(6): 120-124.
|
|
ZHOU H Y, JIA K C, WANG X J, et al. In-plane Compression Properties of Negative Poissons Ratio Sandwich Structure Filled with Foam Concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 2005-2014.
|
[33] |
刘红岩, 胡刚. 有关爆破损伤变量定义中存在的问题及探讨[J]. 爆破, 2003(3): 1-4.
|
[36] |
HUDSON J A. Excitation and propagations[M]. Cambridge: Cambridge University Press, 1980: 157-170.
|
[39] |
TAM N, NARINTSOA R, BALAYSSAC J. Characterization of Damage in Concrete Beams under Bending with Acoustic Emission Technique (AET)[J]. Construction and Building Materials, 2018, 187.
|
[40] |
王普, 陈灯红, 彭刚, 等. 基于能量法的混凝土循环加卸载动态损伤特性[J]. 水利水电技术, 2020, 51(2): 192-197.
|
[4] |
HOSEINI M. Effect of compressive loading on transport properties of cement-based materials[D]. Edmonton: University of Alberta, 2013.
|
[10] |
毛振豪, 张继承, 李元齐, 等. 活性粉末混凝土高温后性能劣化及微观结构[J]. 建筑材料学报, 2022, 25(12): 1225-1232.
|
[15] |
丁勇楠, 李曙光, 田军涛, 等. 冲击回波法定量评估低强和高强混凝土荷载损伤[J]. 水力发电, 2019, 45(3): 120-124.
|
[20] |
张艳博, 王科学, 姚旭龙, 等. 基于波速场成像技术的岩石损伤评价研究[J]. 岩石力学与工程学报, 2019, 38(12): 2404-2417.
|
[25] |
BING H, TIAN Y X. Axial Compressive Stress-strain Relation and Poisson Effect of Structural Lightweight Aggregate Concrete[J]. Construction and Building Materials, 2017, 146: 338-343.
|
[31] |
ROBOTNOV Y N,LECKIE F A PRAGER W. Creep Problems in Structural Members[J]. Journal of Applied Mechanics,1970,37(1):249.
|
|
XU C D, GAO Y W, TIAN J J, et al. Experimental Study on lnfluence of Early Freeze lnjury to the Durability of Concrete[J]. Yellow River, 2021, 43(2): 131-136.
|
|
SHAN G F, YANG W, FENG J M, et al. Advances in Test Methods for Poissons Ratio of Materials[J]. Materials Reports, 2006,20(3): 15-20.
|
|
WU S F, WANG G, YUAN D K, et al. Experimental Study on the Influence of Blasting Vibration on Fresh Concrete[J]. Journal of Vibration and Shock, 2017, 36(2): 39-44.
|
|
WANG X R, WANG E Y, LIU X F, et al. Time-frequency-space Response of Damage Evolution for Concrete Based on AE-UT Joint Monitoring under Step-loading[J]. Journal of China University of Mining & Technology. 2019, 48(2): 268-277.
|
|
ZHOU J H, YANG C X, KONG R, et al. Ultrasonic Evolution Characteristics of Hard Rock Fracture Process Under True Triaxial Compression[J]. Metal Mine, 2022 (10): 10-15.
|
|
WEN L, LIANG X L, FENG W J, et al. An Investigation of the Mechanical Properties of Sandstone under Coupled Static and Dynamic Loading[J]. Rock and Soil Mechanics, 2020, 41(11): 3540-3552.
|
|
LI H W, ZHANG Z H, WANG L G, et al. Evolution law of mechanical properties of coal sample structure damage caused by cyclic cold leaching[J]. Journal of China Coal Society, 2021, 46(S2): 770-776.
|
|
CHENG A P, ZHANG Y S, DAI S Y, et al. Experimental Study on Damage Evolution of Cemented Backfill Based on Ultrasonic Wave Velocity[J]. Metal Mine, 2018(9): 41-46.
|
[28] |
周宏元, 贾昆程, 王小娟, 等. 负泊松比三明治结构填充泡沫混凝土的面内压缩性能[J]. 复合材料学报, 2020, 37(8): 2005-2014.
|
[30] |
KACHANOV L M. Introduction to continuum damage mechanics[M]. Berlin:Springer Science & Business Media, 1986.
|
[35] |
KOMLOS K, POPOVICS S, NMBERGEROV,et al. Ultrasonic Pulse Velocity Test of Concrete Properties as Specified in Various Standards[J]. Cement and Concrete Composites, 1996, 18(5): 357-374.
|
[38] |
徐存东, 高懿伟, 田俊姣, 等. 早期受冻损伤对混凝土耐久性影响的试验研究[J]. 人民黄河, 2021, 43(2): 131-136.
|
[42] |
单桂芳, 杨伟, 冯建民, 等. 材料泊松比测试方法的研究进展[J]. 材料导报, 2006,20(3): 15-20.
|
[37] |
贾蓬, 祝鹏程, 李博, 等. 单轴压缩过程中岩石的实时超声波特性[J]. 中南大学学报(自然科学版), 2022, 53(10): 3967-3977.
|
[43] |
PARIHAR H S, SHANKER R, SINGH V. Effect of variation of steel reinforcement on ultrasonic pulse velocity prediction in concrete beam[J]. Materials Today: Proceedings, 2022, 65:1486-1490.
|
|
WANG P, CHEN D H, PENG G, et al. Dynamic damage characteristics of concrete during cyclic loading and unloading based on energy method[J]. Water Resources and Hydropower Engineering, 2020, 51(2): 192-197.
|
|
|
|