|
|
Cavitation Fault Diagnosis of Centrifugal Pump Based on Image Recognition |
HUANG Haiming,LIU Yan,WU Denghao,MOU Jiegang |
College of Metrology and Measurement Instrument, China Jiliang University, Hangzhou, Zhejiang 310018, China |
|
|
Abstract When using the one-dimensional vibration signal of a centrifugal pump to identify the cavitation state, there are problems such as inaccurate signal feature search and the signal being greatly affected by noise. A centrifugal pump cavitation fault diagnosis method based on image recognition is proposed. The savitzky-golay convolution smoothing algorithm is used to denoise the original vibration signal, and then the denoised signal is converted into a pseudo-RGB image. A convolution kernel is designed based on the characteristics displayed in the image, and the image is convolved to obtain the features picture. Single-channel transformation is performed on the feature picture to reduce data, and finally the single-channel image is used as the input of the LeNet-5 neural network for cavitation fault diagnosis. Experimental test results show that the method can accurately identify centrifugal pump cavitation faults while accelerating model training, and the accuracy can reach 1. The study provides a new method for rapid diagnosis of centrifugal pump cavitation.
|
Received: 20 September 2022
Published: 23 May 2024
|
|
|
|
|
[4] |
司乔瑞, 廖敏泉, 邱宁, 等. 离心泵空化诱导噪声研究进展[J]. 船舶力学, 2022, 26(5): 761-773.
|
|
WANG C H, CAI J H, ZENG J S. Research on rolling bearing fault diagnosis based on empirical mode decomposition and principal component
|
[20] |
陈剑, 刘圆圆, 黄凯旋, 等. 基于奇异值分解和独立分量分析的滚动轴承故障诊断方法[J]. 计量学报, 2022, 43(6): 777-785.
|
[1] |
吴登昊, 吴振兴, 周佩剑,等. 低比转速离心泵叶轮瞬态空化特性分析[J]. 水力发电学报, 2018, 37(3): 96-105.
|
|
WU D H, WU Z X, ZHOU P J, et al. Transient characteristics of cavitation in low specific speed centrifugal pumps[J]. Journal of Hydroelectric Engineering, 2018, 37(3): 96-105.
|
|
TIAN L Y, ZHANG Y Z. Fault diagnosis of submersible pump based on Local mean decomposition and fast independent component analysis[J]. Acta Metrologica Sinica, 2020, 41(5):585-591.
|
[5] |
PANDA A K, RAPUR J S, TIWARI R. Prediction of flow blockages and impending cavitation in centrifugal pumps using support vector machine (SVM) algorithms based on vibration measurements[J]. Measurement, 2018, 130: 44-56.
|
|
CHEN J, HUANG K X, LV W Y, et al. Fault diagnosis method of variable working condition bearing based on VMD and convolutional neural network[J]. Acta Metrologica Sinica, 2021, 42(7): 892-897.
|
[7] |
郑慧峰, 喻桑桑, 王月兵,等. 基于经验模态分解和奇异值分解的振动声调制信号分析方法研究[J]. 计量学报, 2016, 37(4):398-401.
|
|
ZHENG H F, YU S S, WANG Y B, et al. Research on vibration tone system signal analysis method based on empirical mode decomposition and singular value Decomposition[J]. Acta Metrologica Sinica, 2016, 37(4):398-401.
|
[9] |
SHERVANI-TABAR M T, ETTEFAGH M M, LOTFAN S, et al. Cavitation intensity monitoring in an axial flow pump based on vibration signals using multi-class support vector machine[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232(17): 3013-3026.
|
[12] |
张小明, 唐建, 韩锦. 基于SVD的EMD模态混叠消除方法[J]. 噪声与振动控制, 2016, 366: 142-147.
|
[24] |
黄明辉, 李梦云, 代煜. 基于Savitzky-Golay算法的某深基坑监测数据降噪处理[J]. 汕头大学学报(自然科学版), 2022, 37(2): 50-60.
|
[2] |
田立勇, 张一辙. 基于局部均值分解与快速独立成分分析的潜水泵故障诊断[J]. 计量学报, 2020, 41(5):585-591.
|
[3] |
MCKEE K K, FORBES G L, MAZHAR I, et al. A review of machinery diagnostics and prognostics implemented on a centrifugal pump[C]//Engineering Asset Management 2011: Proceedings of the Sixth World Congress on Engineering Asset Management. Cincinnati, USA, 2014: 593-614.
|
[8] |
汪朝海, 蔡晋辉, 曾九孙. 基于经验模态分解和主成分分析的滚动轴承故障诊断研究[J]. 计量学报, 2019, 40(6):1077-1082.
|
|
analysis[J]. Acta Metrologica Sinica, 2019, 40(6):1077-1082.
|
|
DAI T, ZHANG Y F, ZHANG K X, et al. The research progress of empirical mode decomposition and mode mixing elimination[J]. Application of Electronic Technique, 2019, 45(3): 7-12.
|
|
ZHANG X M, TANG J, HAN J. An EMD mode aliasing ekimination method based on SVD[J]. Noise and Vibration Control, 2016, 36(6): 142-147.
|
[13] |
王栋, 丁雪娟. 基于包络解调随机共振和CEEMD的机械早期微弱故障诊断方法研究[J]. 计量学报, 2016, 37(2):185-190.
|
[14] |
ALTOB M A S, BEVAN G, WALLACE P, et al. Fault diagnosis of a centrifugal pump using MLP-GABP and SVM with CWT[J]. Engineering Science and Technology, an International Journal, 2019, 22(3): 854-861.
|
[16] |
LOTFAN S, SALEHPOUR N, ADIBAN H, et al. Bearing fault detection using fuzzy C-means and hybrid C-means-subtractive algorithms[C]//2015 IEEE International Conference on Fuzzy Systems . IEEE, Istanbul, Turkey,2015: 1-7.
|
[19] |
WANG H, LI S, SONG L, et al. A novel convolutional neural network based fault recognition method via image fusion of multi-vibration-signals[J]. Computers in Industry, 2019, 105: 182-190.
|
[22] |
陈剑, 孙太华, 黄凯旋, 等. 基于直方图均衡化和卷积神经网络的轴承故障诊断方法[J]. 计量学报, 2022, 43(7): 907-912.
|
[28] |
于曰伟, 赵雷雷, 周长城. 改进的车辆振动响应均方根值计算公式及其工程应用[J]. 汽车工程, 2019, 41(9): 1088-1095.
|
[29] |
李恒. 基于深度学习过拟合现象的分析[J]. 中国科技信息, 2020(14): 90-91.
|
|
SI Q R, LIAO M Q, QIU N, et al. Research progress of cavitation induced noise in centrifugal pump[J]. Journal of Ship Mechanics, 2022, 26(5): 761-773.
|
[6] |
陈剑, 黄凯旋, 吕武佯, 等. 基于VMD和卷积神经网络的变工况轴承故障诊断方法[J]. 计量学报, 2021, 42(7): 892-897.
|
[10] |
戴婷, 张榆锋, 章克信, 等. 经验模态分解及其模态混叠消除的研究进展[J]. 电子技术应用, 2019, 45(3): 7-12.
|
[11] |
蒋永华, 焦卫东, 李荣强, 等. 应用自适应带宽信号的BS-EMD混叠消除[J]. 振动与冲击, 2018, 37(16): 83-90.
|
|
FU X W, Gao X Q. Rolling bearing fault diagnosis method based on FDM and singular value difference spectrum[J]. Acta Metrologica Sinica, 2018, 39(5):688-692.
|
[17] |
HASAN M J, RAI A, AHMAD Z, et al. A fault diagnosis framework for centrifugal pumps by scalogram-based imaging and deep learning[J]. IEEE Access, 2021, 9: 58052-58066.
|
|
CHEN J, LIU Y Y, HUANG K X, et al. Rolling bearing fault diagnosis method based on singular value decomposition and independent component analysis[J]. Acta Metrologica Sinica,2022, 43(6): 777-785.
|
[23] |
SAVITZKY A, GOLAY M J E. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical chemistry, 1964, 36(8): 1627-1639.
|
|
HUANG M H, LI M Y, DAI Y. Based on the Savitzky-Golay noise reduction algorithm of a deep foundation pit monitoring data[J]. Journal of Shantou University(Natural Science Edition), 2022, 37(2): 50-60.
|
|
JIANG Y H, JIAO W D, LI R Q, et al. Astudy on the method for eliminating mode mixing in B-spline empirical mode decomposition based on adaptive bandwidth constrained signal[J]. Journal of Vibration and Shock, 2018, 37(16): 83-90.
|
[18] |
KUMAR A, GANDHI C P, ZHOU Y, et al. Improved deep convolution neural network (CNN) for the identification of defects in the centrifugal pump using acoustic images[J]. Applied Acoustics, 2020, 167: 107399.
|
[25] |
OSHEA K, NASH R. An introduction to convolutional neural networks[EB/OL]. arXiv preprint arXiv: 1511, 08458, 2015.
|
|
WANG D, DING X J. Research on early mechanical weak fault diagnosis method based on envelope demodulated stochastic resonance and CEEMD.[J]. Acta Metrologica Sinica, 2016, 37(2):185-190.
|
[15] |
付秀伟, 高兴泉. 基于傅里叶分解与奇异值差分谱的滚动轴承故障诊断方法[J]. 计量学报, 2018, 39(5):688-692.
|
[21] |
HIDAYAT A Y, WIDODO A, HARYADI G D. Fault diagnostic system bearing centrifugal pump using K-Means method for thermography image and signal analysis vibrations[C]//MATEC Web of Conferences. EDP Sciences, Bali, Indonesia, 2018, 159: 02006.
|
|
CHEN J, SUN T H, HUANG K X, et al. Bearing fault diagnosis method based on histogram equalization and convolutional neural network[J]. Acta Metrologica Sinica, 2022, 43(7): 907-912.
|
|
YU Y W, ZHAO L L, ZHOU C C. Modified RMS calculation formulae for vehicle vibration responses and their engineering application[J]. Automotive Engineering, 2019, 41(9): 1088-1095.
|
|
LI H. Analysis of overfitting phenomenon based on deep learning[J]. China Science and Technology Information, 2020(14): 90-91.
|
[26] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
|
[27] |
LU Y, WANG Z, XIE R, et al. Bayesian optimized deep convolutional network for bearing diagnosis[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(1): 313-322.
|
|
|
|