|
|
Research on the Influence of Cavity Effect on Integrated Blackbody High-temperature Emissivity Measurement |
SUN Luge1,AN Baolin2,ZHAO Yunlong2,WANG Bingkai3,ZHAI Huixing1, DONG Wei2,WANG Ruixiang1 |
1. Beijing Engineering Research Center of Sustainable Energy and Buildings,Beijing University of Civil Engineering and Architecture,Beijing 100044, China
2. National Institute of Metrology, Beijing 100029, China
3. Changchun University of Science and Technology, Changchun, Jilin 130022, China |
|
|
Abstract Theoretical models for correction factors of non-isothermal boundary cavity effects in integrated blackbody method are proposed. Based on the finite element method, theoretical calculations of correction factors for non-isothermal boundary cavity effects are carried out under different emissivity samples and specific temperature fields. These calculations are compared with correction factors obtained based on the Monte Carlo ray tracing method, showing good agreement with a maximum deviation of no more than 2.5%. The results indicate that with longer wavelengths and lower sample emissivity, the cavity effect has a greater impact on emissivity measurement results. Emissivity measurements of platinum material samples are conducted at 1000°C temperature and within the wavelength range of 12~14μm. These measurements are compared with results obtained using the discrete blackbody method. After correction, the consistency between the integrated blackbody method and the discrete blackbody method is improved from 0.08 to 0.03. This result verifies the feasibility of introducing correction factors for non-isothermal boundary cavity effects in the theoretical model and improves the accuracy of emissivity measurement using this method.
|
Received: 30 October 2023
Published: 03 April 2024
|
|
|
|
|
[17] |
杨贤荣. 辐射换热角系数手册[M]. 北京: 国防工业出版社, 1982.
|
[18] |
胡德东. 基于Monte Carlo方法的黑体空腔辐射特性研究[D]. 沈阳: 东北大学, 2016.
|
[2] |
王超哲, 童中翔, 芦艳龙, 等. 飞机红外辐射特性及其探测技术研究[J]. 激光与红外, 2011, 41(9): 998-999.
|
[5] |
韩伟, 刘岩, 杜蕾, 等. 发射率对半导体器件显微红外测温结果的影响[J]. 计量学报, 2021, 42(1): 35-40.
|
[13] |
PROKHOROV A V, HANSSEN L M. Effective emissivity of a cylindrical cavity with an inclined bottom: II. Non-isothermal cavity [J]. Metrologia, 2010, 47: 33-46.
|
|
XU F, YAO K K, ZhANG R J, et al. Test and evaluation technique for infrared radiation characteristics of aircraft engines[J]. Laser and Infrared, 2019, 49(10): 1223-1227.
|
[4] |
常稼强, 郝小鹏, 吕彪, 等. 自校准地表/水表面红外辐射测温仪的研制[J]. 计量学报, 2019, 40(2): 240-245.
|
[6] |
POSTLETHWAIT M A, SIKKA K K, MODEST M F, et al. High-temperature, normal spectral emittance of silicon carbide-based materials [J]. Journal of thermophysics and heat transfer, 1994, 8(3): 412-418.
|
[8] |
SCHSSLER M, AUWETER-KURTZ M, HERDRICH G, et al. Surface characterization of metallic and ceramic TPS-material for reusable space vehicles [J]. Acta Astronautica, 2009, 65: 676-686.
|
[9] |
HERDRICH G, L HLR S, AUWETER-KURTZ M, et al. IRS ground-testing facilities: thermal protection system development, code validation, and flight experiment development[C]//37th AIAA Thermophysics Conference. Portland, 2004.
|
[11] |
ZHANG T, SONG X Y, QI G, et al. Investigation of High-Temperature Normal Infrared Spectral Emissivity of ZrO2 Thermal Barrier Coating Artefacts by the Modified Integrated Blackbody Method[J]. Materials, 2021, 15(1): 235.
|
[15] |
SAUNDERS P. Reflection errors and uncertainties for dual and multiwavelength pyrometers[J]. High Temperatures-High Pressures, 2000, 32(2): 239-249.
|
[20] |
沈久利, 邢婷婷, 吴飞. 基于Monte-Carlo法的圆锥形黑体腔有效发射率的研究[J]. 计量学报, 2018, 39(3): 359-362.
|
[21] |
赵亿坤, 王景辉, 原遵东, 等. 低温标准黑体辐射源的性能研究[J]. 计量学报, 2017, 38(5): 589-592.
|
[1] |
许帆, 姚凯凯, 张锐娟, 等. 航空发动机红外辐射特性测试评估技术[J]. 激光与红外, 2019, 49(10): 1223-1227.
|
|
WANG C Z, TONG Z X, LU Y L, et al. Research on infrared radiation characteristics and detection techniques of aircraft[J]. Laser and Infrared, 2011, 41(9): 998-999.
|
|
HAN W, LIU Y, DU L, et al. Influence of Emissivity of Infrared Thermal Results of Semiconductor Device[J]. Acta Metrologica Sinica, 2021, 42(1): 35-40.
|
[7] |
MASSUTI-BALLESTER B, PAGAN A, HERDRICH G. Determination of total and spectral Emissivity of Space-relevant Materials[C]//8th European Symposium on Aerothermodynamics for Space Vehicles. 2015.
|
[10] |
宋旭尧, 董伟, 潘奕捷, 等. 基于集成黑体法1000~1500℃石墨材料高温红外光谱发射率测量[J]. 红外与毫米波学报, 2021, 40(2): 204-213.
|
[14] |
MCKENZI J, LEE T, ZUROB M. Tapered photonic crystal light-emitting device: 200780049589[P][2023-09-18].
|
[16] |
MODEST M F. Radiative heat transfer, second edition [M]. Pittsburgh: Academic Press, 2003.
|
[19] |
刘波, 郑伟, 李海洋, 等. 等温黑体空腔积分发射率响应面法研究[J]. 计量学报, 2019, 40(4): 625-630.
|
|
ZHAO Y K, WANG J H, YUAN Z D, et al. Study on the Performance of the Low-temperature Blackbody Radiation Source[J]. Acta Metrologica Sinica, 2017, 38(5): 589-592.
|
[3] |
关玉波, 尚守堂, 王东明, 等. 发动机整机红外辐射特性测试方案研究[C]// 2014航空试验测试技术学术交流会论文集. 2014.
|
|
CHANG J Q, HAO X P, LV B, et al. Development of Self-calibrated Infrared Radiation Thermometer for Surface of Ground or Water[J]. Acta Metrologica Sinica, 2019, 40(2): 240-245.
|
|
SONG X Y, DONG W, PAN Y J, et al. Measurement of high-temperature infrared spectral emissivity of graphite materials from 1000 to 1500℃ based on integrated blackbody method[J]. Journal of Infrared and Millimeter Waves, 2021, 40(2): 204-213.
|
[12] |
SUN L G, SONG X Y, AN B L, et al. Research of temperature distribution and radiation characteristics of integrated blackbody on high-temperature [C]// AOPC 2022: Infrared Devices and Infrared Technology,and Terahertz Technology and Applications. Beijing, 2022.
|
|
LIU B, ZHENG W, LI H Y, et al. Study on Integrated Emissivity of an Isothermal Blackbody Cavity with Response Surface Methodology[J]. Acta Metrologica Sinica, 2019, 40(4): 625-630.
|
|
SHEN J L, XING T T, WU F. Research on the Effective Emissivity of Conical Blackbody Cavity Based on Monte-Carlo Method[J]. Acta Metrologica Sinica, 2018, 39(3): 359-362.
|
|
|
|