|
|
Fabrication and Quality Evaluation of 2~10μm Step Height Reference Material Candidates |
LIU Di1,3,WANG Chenying2,3,ZHANG Yaxin1,3,WANG Yunxiang4,WANG Song1,3,CHEN Luntao1,3,WANG Yonglu3,ZHU Nan3,JIANG Zhuangde1,3 |
1. School of Mechanical Engineering, Xi′an Jiaotong University, Xi′an, Shaanxi 710049, China
2. School of Instrument Science and Technology, Xi′an Jiaotong University, Xi′an, Shaanxi 710049, China
3. State Key Laboratory for Manufacturing Systems Engineering, Xi′an Jiaotong University,Xi′an, Shaanxi 710049, China
4. Suzhou Institute of Metrology, Suzhou, Jiangsu 215128, China |
|
|
Abstract The micrometer step height reference materials can used to calibrate the z-axis performance of the instrument and transmit accurate micrometer height values. The step height reference material candidates with 2,5,10μm nominal size are prepared by photolithography combined with dry etching. The height, roughness, and parallelism of the steps are characterized. Using a laser confocal microscope and an aspheric measuring instrument for measurement, the step height is evaluated based on the bilateral algorithm, histogram method, International Organization for Standardization (ISO algorithm, and the decoupling criterion for optical microscopy (LEL) method. For the same reference material candidates, the standard deviation between each evaluation method does not exceed 0.024μm. Moreover, the relative deviation of the step height evaluation values is within 5%. This indicates that the evaluation results obtained using different algorithms and instruments have a high level of consistency and reliable measurement values. The comparison of evaluation results from different instruments indicates that the evaluation methods also have good consistency. Meanwhile, the roughness does not exceed 0.04μm. The parallelism of the upper and lower surfaces does not exceed 0.03°, which verifies the good preparation effect of the reference material candidates.
|
Received: 19 September 2023
Published: 25 March 2024
|
|
|
|
|
|
XU X Q, LI S Y, FENG Y N, et al. Quality parameter evaluation of micro-nano sized step height samples[J]Metrology & Measurement Technology, 2016, 36(S1): 29-32.
|
|
ZHANG Y X, WANG C Y, JING W X, et al. Study on the controllable fabrication and calibration of sub-50 nm step height reference materials[J]. Chinese Journal of Scientific Instrument, 2022, 43(11): 86-93.
|
|
FENG Y N, LI S Y, HAN Z G, et al. Selection of the Etching Processes for the fabrication of the Micro Step Height Specimens[J]. Micronanoelectronic Technology, 2016, 53(11): 773-778.
|
|
WU X T, WANG S H, ZHONG Y N, et al. Applicability Analysis of Step Height Evaluation Algorithm[J]. Journal of Hubei University of Automotive Technology, 2018, 32(3): 32-36.
|
[14] |
刘俭, 谷康, 李梦周, 等. 光学显微三维测量解耦合准则[J]. 红外与激光工程, 2017, 46(3): 8-14.
|
[5] |
徐毅, 高思田, 李晶. 纳米、亚微米标准样板及SPM量值溯源[J]. 计量学报, 2003,24(2): 81-84.
|
[11] |
Geometrical Product Specifications (GPS)-Surface texture: Profile method; Measurement standards:ISO 5436-1[S]. 2000.
|
[4] |
张雅馨, 王琛英, 景蔚萱, 等. 亚50nm台阶高度标准物质的可控制备及定值研究[J]. 仪器仪表学报, 2022, 43(11): 86-93.
|
[9] |
FU J, TSAI V, KONING R, et al. Algorithms for calculating single-atom step heights[J]. Nanotechnology, 1999, 10(4): 428.
|
|
CHEN H J, WEI H J. Dry Etching Process and Equipment[J]. Plant Maintenance Engineering, 2020(13): 137-139.
|
[2] |
VLSI. Ultra Thick Step Height Standards[S]. https://www.vlsistandards.com/products/dimensional/ultrathickshs.asp?SID=107.[2023-08-29].
|
[8] |
胡凯, 蒋向前, 刘晓军. 台阶高度的评定方法[J]. 中国仪器仪表, 2009(10): 69-72.
|
[10] |
BENNETT J M. Comparison of instruments for measuring step heights and surface profiles[J]. Applied Optics, 1985, 24(22): 3766.
|
[15] |
LIU J, LI M, LI Q, et al. Decoupling criterion based on limited energy loss condition for groove measurement using optical scanning microscopes[J]. Measurement Science & Technology, 2016, 27(12): 125014.
|
[16] |
余茜茜, 施玉书, 张树, 等. 微纳米台阶高度评定方法的比较与分析[J]. 计量技术, 2020(8): 29-33.
|
|
CHENG Y T, LIU C Q, WU H. Ion Beam Etching Technology and Analysis of Common Failures of the Equipment[J]. Equipment for Electronic Products Manufacturing, 2021, 50(5): 33-38.
|
|
XU Y, GAO S T, LI J. Nanometer and Sub-micrometer Standard Samples and Valuation Traceability for SPM[J]. Acta Metrologica Sinica, 2003,24(2): 81-84.
|
[12] |
KOENING R G J, DIXSON R G, FU J, et al. Step-height metrology for data storage applications[C]// Conference on Recent Advances in Metrology, Characterization, and Standards for Optical Digital Data Disks. DENVER, CO, United States,1999.
|
[6] |
冯亚南, 李锁印, 韩志国, 等. 微米级台阶高度样块制备中刻蚀工艺的选择[J]. 微纳电子技术, 2016, 53(11): 773-778.
|
[13] |
YANG S, LI C, WANG C, et al. A sub-50nm three-step height sample for AFM calibration[J]. Measurement Science & Technology, 2014, 25(12): 125004-125011.
|
[18] |
程壹涛, 刘成群, 吴海. 离子束刻蚀技术与设备常见故障分析[J]. 电子工业专用设备, 2021, 50(5): 33-38.
|
[3] |
VLSI. Step Height Standards (Quartz)[S]. https://www.vlsistandards.com/products/dimensional/step.asp?SID=100.[2023-08-29].
|
|
HU K, JIANG X Q, LIU X J. Evaluation Method of Step Height[J]. China Instrumentation, 2009(10): 69-72.
|
[17] |
陈海军, 魏宏杰. 干法刻蚀工艺与设备[J]. 设备管理与维修, 2020(13): 137-139.
|
[1] |
许晓青, 李锁印, 冯亚南, 等. 微纳尺寸台阶高度样块的质量参数评价[J]. 计测技术, 2016, 36(S1): 29-32.
|
[7] |
吴小桐, 王生怀, 钟毓宁, 等. 台阶高度评定算法的适应性研究[J]. 湖北汽车工业学院学报, 2018, 32(3): 32-36.
|
|
LIU J, GU K, LI M Z, et al. 3D measurement decoupling criterion in optical microscopy[J]. Infrared and Laser Engineering, 2017, 46(3): 8-14.
|
|
|
|