|
|
NOx Concentration Prediction Model Based on Feature Optimization and BSO-RBF Neural Network |
ZHANG Guoxing,WANG Shipeng |
Guoneng Ningxia Yuanyanghu No.1 Power Generation Co., Ltd., Yinchuan,Ningxia 750011,China |
|
|
Abstract In the process of thermal power generation, the operation condition of combustion system is complicated and the delay is large, which makes it difficult to accurately measure the inlet NOx mass concentration in the selective catalytic reduction (SCR) flue gas denitration system. To solve this problem, a prediction model based on feature optimization and radial basis (RBF) neural network is proposed. Firstly, the variable after feature optimization is taken as the final input variable of the model. Secondly, the beetle swarm optimization (BSO) is used to optimize the neural network hyperparameters. Finally, a prediction model of inlet NOx concentration is established. The results show that the predictive results of the optimized variables are better than those of the original variables. After feature optimization and timely delay, the SRMSE of the model decreased by 44.5%, and the R2 increased by 2.3%. The neural network hyperparameters determined by BSO also improved the accuracy of the model.
|
Received: 12 July 2023
Published: 21 February 2024
|
|
|
|
|
[21] |
赵文杰, 张楷. 基于互信息变量选择的SCR烟气脱硝系统非线性自回归神经网络建模[J]. 热力发电, 2018, 47(9): 22-26.
|
[9] |
吴康洛, 黄俊, 李峥辉, 等. 基于MIC-CFS-LSTM的SCR出口氮氧化物浓度动态预测[J]. 洁净煤技术,2023,29(6): 1-10.
|
[16] |
DRAGOMIRETSKIY K, ZOSSD D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
|
[23] |
金秀章, 刘岳, 赵文杰等. 基于mRMR和MA-RELM的火电厂出口SO2质量浓度预测[J]. 动力工程学报, 2022, 42(7): 664-670.
|
[11] |
金秀章, 刘岳, 于静, 等. 基于变量选择和EMD-LSTM网络的出口SO2浓度预测[J]. 中国电机工程学报, 2021, 41(24): 8475-8484.
|
[2] |
董泽, 闫来清. SCR脱硝系统 NOx 排放浓度建模与仿真[J]. 系统仿真学报, 2020, 32(2): 172-181.
|
[5] |
单斌斌, 李华, 谷瑞政, 等. 基于天牛须搜索算法的短期风电功率组合预测[J]. 科学技术与工程, 2022, 22( 2): 540-546.
|
|
WU K L, HUANG J, LI Z H, et al. Dynamic prediction of the NOx concentration at SCR system outlet based on MIC-CFS-LSTM model[J]. Clean Coal Technology, 2023,29(6):1-10.
|
|
LI Q Y, CAO Q S, WANG T T. Parameter optimization of sliding mode controller for fleet based on particle swarm optimization[J]. Computer Engineering and Design, 2022, 43(3): 808-813.
|
[18] |
余廷芳, 刘冉. 基于RBF神经网络和BP神经网络的燃煤锅炉NOx排放预测[J]. 热力发电, 2016, 45(8): 94-98.
|
|
DONG Z, YAN L Q. Modelling and Simulation for NOx Emission Concentration of SCR Denitrification System[J]. Journal of System Simulation, 2020, 32(2): 172-181.
|
|
SHAN B B, LI H, GU R Z, et al. Short-term wind power combination prediction based on beetle antennae search algorithm[J]. Science Technology and Engineering, 2022, 22( 2): 540-546.
|
[10] |
HONG D, BALZANO L, FESSLER J A. Towards a theoretical analysis of PCA for heteroscedastic data[C]//2016 54th Annual Allerton Conference on Communication, Control, and Computing(Allerton). Monticello, IL, USA, 2017.
|
|
XIE L R, WANG B, BAO H Y, et al. Super-short-term wind power forecasting based on EEMD-WOA-LSSVM[J]. Acta Energiae Solaris Sinica, 2021, 42(7): 290-296.
|
|
WANG F, MA S X, WANG H. Prediction model of carbon content in fly ash using random forest variable selection method[J]. Thermal Power Generation, 2018, 47(11): 89-95.
|
[3] |
LI Q W, ZHOU K Y, YAO G H. Combustion optimization model for NOx reduction with an improved particle swarm optimization[J]. Journal of Shanghai Jiaotong University(Science), 2016, 21(5): 569-575.
|
[6] |
李沁颖, 曹青松, 王涛涛. 基于粒子群算法的车队滑模控制器参数优化[J]. 计算机工程与设计, 2022, 43(3): 808-813.
|
[7] |
闫来清, 董泽. 基于k-近邻互信息和WKOPLS的SCR脱硝系统动态预测模型[J]. 中国电机工程学报, 2019, 39(10): 2970-2980.
|
[8] |
唐振浩, 柴向颖, 曹生现, 等. 考虑时延特征的燃煤锅炉NOx排放深度学习建模[J]. 中国电机工程学报, 2020, 40(20): 6633-6644.
|
|
TANG Z H, CHAI X Y, CAO S X, et al. Deep Learning Modeling for the NOx Emissions of Coal-fired Boiler Considering Time-delay Characteristics[J]. Proceedings of the CSEE, 2020, 40(20): 6633-6644.
|
|
LIU C L, WU Y J, ZHEN C G. Fault diagnosis of rolling bearing based on variational mode decomposition and fuzzy C-means clustering[J]. Proceedings of the CSEE, 2015, 35(13): 3358-3365.
|
[19] |
JIANG X, LI S. BAS: beetle antennae search slgorithm for optimi-zation problems[J]. Internation Journal of Robotics and Control, 2018, 1 (1): 1-8.
|
|
WU L, KANG Y W. Prediction model of SO2 concentration in desulfurization system based on improved particle swarm optimization LSTM[J]. Thermal Power Generation, 2021, 50(12): 66-73.
|
|
ZHAO W J, ZHANG K. NARX neural network modeling of SCR denitration system based on mutual information variables selection[J]. Thermal Power Generation, 2018, 47(9): 22-26.
|
|
JIN X Z, LIU Y, ZHAO W J, et al. Prediction of SO2 Mass Concentration at Outlet of the Thermal Power Plant Based on mRMR and MA-RELM[J]. Journal of Chinese Society of Power Engineering, 2022, 42(7): 664-670.
|
|
YAN L Q, DONG Z. Dynamic Prediction Model of SCR Denitrification System Based on k-nearest Neighbor Mutual Information and WKOPLS[J]. Proceedings of the CSEE, 2019, 39(10): 2970-2980.
|
[4] |
FU J, XIAN H, WANG T, et al. Prediction model of desulfurization efficiency of coal-fired power plants based on long short-term memory neural network[C]//2019 International Conference on Internet of Things(i Things) and IEEE Green Computing and Communications(Green Com) and IEEE Cyber, Physical and Social Computing(CPSCom) and IEEE Smart Data(Smart Data). Atlanta, USA, 2019.
|
[15] |
闫来清. SCR烟气脱硝系统数据驱动建模与优化控制研究[D]. 北京: 华北电力大学, 2020.
|
[22] |
李钊, 秦增光, 刘兆军, 等. 基于全变分辅助的相敏光时域反射技术[J]. 光学学报, 2021, 41(17): 32-39.
|
|
LI Z, QIN Z G, LIU Z J, et al. Phase-sensitive optical time domain reflectometry assisted by total variation techniques[J]. Acta Optica Sinica, 2021, 42(17): 32-39.
|
[24] |
王芳, 马素霞, 王河. 基于随机森林变量选择的飞灰含碳量预测模型[J]. 热力发电, 2018, 47(11): 89-95.
|
|
JIN X Z, LIU Y, YU J, et al. Prediction of Outlet SO2 Concentration Based on Variable Selection and EMD-LSTM Network[J]. Proceedings of the CSEE, 2021, 41(24): 8475-8484.
|
[12] |
QIU X H, REN Y, SUGANTHAN P N, et al. Empirical mode decomposition based ensemble deep learning for load demand time series forecasting[J]. Applied Soft Computing, 2017(54): 246-255.
|
[13] |
谢丽蓉, 王斌, 包洪印, 等. 基于EEMD-WOA-LSSVM的超短期风电功率预测[J]. 太阳能学报, 2021, 42(7): 290-296.
|
|
YU T F, LIU R. NOx emission prediction for coal-fired boilers based on RBF Neural network and BP Neural network[J]. Thermal Power Generation, 2016, 45(8): 94-98.
|
[14] |
KRASKOV A, STGBAUER H, GRASSBERGER P. Estimating Mu-tual Information[J]. Physical Review E, 2004, 69 (6 Pt 2): 066138.
|
[17] |
刘长良, 武英杰, 甄成刚. 基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J]. 中国电机工程学报, 2015, 35(13): 3358-3365.
|
[20] |
吴磊, 康英伟. 基于改进粒子群优化长短时记忆神经网络的脱硫系统SO2预测模型[J]. 热力发电, 2021, 50(12): 66-73.
|
[1] |
STREETS D G, WALDHOFF S T, Present and future emissions of air pollu-tants in China: SO2, NOx, and CO[J]. Atmospheric Environment, 2000, 34( 3): 363-374.
|
|
|
|