|
|
Image Reconstruction of Electrical Capacitance Tomography Based on Nonconvex Entropy Minimization and Gaussian Mixture Model Clustering |
ZHANG Lifeng,LU Dongchen,LIU Weiliang |
Department of Automation, North China Electric Power University, Baoding, Hebei 071003, China |
|
|
Abstract Based on the principle of compressed sensing, a method of constructing nonconvex entropy (NE) function as regularization term is proposed, which can effectively alleviate the inverse problem of electrical capacitance tomography (ECT) ill-condition and ensure the sparseness of the solution. Fast iterative threshold contraction algorithm (FISTA) is used to accelerate the convergence rate. The obtained solution is optimized by Gaussian mixture model (GMM), and the model parameters are updated by expectation maximization algorithm (E-M). After that, NE-GMM algorithm is obtained. Both simulation and experimental results show that reconstructed images with the best quality can be obtained using NE-GMM algorithm compared with LBP, Landweber, iterative hard threshold (IHT), ADMM-L1 and NE algorithms, especially the fidelity of center distribution and multi-object distribution is further improved. The average relative error and correlation coefficient of the simulated reconstructed image obtained by this method are respectively 0.4611 and 0.8827, which are superior to the other five methods.
|
Received: 30 May 2022
Published: 21 February 2024
|
|
|
|
|
[5] |
王琦, 张荣华, 王金海, 等. 基于压缩感知的ECT/CT双模融合系统成像方法[J].仪器仪表学报, 2014, 35(6):1338-1346.
|
[20] |
张立峰, 张梦涵. 基于自适应模拟退火及LM联合反演算法的ECT图像重建[J].仪器仪表学报, 2021, 42(12):228-235.
|
|
ZHANG L F, ZHANG M. An optimization algorithm of electrical capacitance tomography image reconstruction [J]. Acta Metrologica Sinica, 2021,42(9):1155-1159.
|
|
WANG Q, ZHANG R H, WANG J H, et al. Imaging method of ECT/CT dual-mode fusion system based on compressed sensing [J]. Chinese Journal of Scientific Instrument, 2014, 35(6):1338-1346.
|
[2] |
张立峰, 张明. 一种电容层析成像图像重建优化算法[J].计量学报, 2021, 42(9):1155-1159.
|
[1] |
王化祥. 电学层析成像[M]. 北京:科学出版社,2013.
|
[3] |
刘再兴, 王海刚. 同心圆环区域电容层析成像传感器数目优化[J].仪器仪表学报, 2021, 42(10):94-104.
|
[8] |
马敏,王涛.双小波非凸稀疏正则化去噪算法研究[J].计量学报, 2021, 42(1):85-90.
|
[13] |
王卫东, 徐金慧, 张志峰, 等. 基于密度峰值聚类的高斯混合模型算法[J]. 计算机科学, 2021, 48(10):191-196.
|
[11] |
TIAN Y, CAO Z, HU D, et al.A Fuzzy PID-Controlled Iterative Calderon’s Method for Binary Distribution in Electrical Capacitance Tomography[J]. IEEE Transactions on Instrumentation and Measurement, 2021,70:1-11.
|
[9] |
HUANG S, TRAC D, DUNG N. Sparse signal recovery based on nonconvex entropy minimization[C]//IEEE International Conference on Image Processing (ICIP). 2016:3867-3871.
|
[4] |
张立峰, 宋亚杰. 基于梯度投影稀疏重建算法的电容层析成像图像重建[J].计量学报, 2019, 40(4):631-635.
|
[7] |
TIAN W B, SUO P, LIU D, et al. Simultaneous Shape and Permittivity Reconstruction in ECT With Sparse Representation: Two-Phase Distribution Imaging[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70:1-14.
|
[12] |
HE X K, JIANG Y D,WANG B L, et al. An Image Reconstruction Method of Capacitively Coupled Electrical Impedance Tomography (CCEIT) Based on DBSCAN and Image Fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70:1-11.
|
[15] |
陈宇, 夏宗基, 周雨佳. 基于修正稀疏拟牛顿的电容层析成像重建算法[J]. 系统仿真学报, 2019, 31(5):819-827.
|
|
MA M, WANG T. Research on Denoising Algorithm of Nonconvex Sparse Regularization of Double Wavelet [J]. Acta Metrologica Sinica, 2021,42(1):85-90.
|
|
CHEN Y, XIA Z J, ZHOU Y J. Reconstruction algorithm of electrical capacitance tomography based on modified sparse quasi-Newton [J]. Journal of System Simulation, 2019, 31(5):819-827.
|
|
ZHANG L F, SONG Y J. Image reconstruction of electrical capacitance tomography based on gradient projection sparse reconstruction algorithm [J]. Acta Metrologica Sinica, 2019, 40(4):631-635.
|
[10] |
ZHANG L F, DAI L. Image Reconstruction of Electrical Capacitance Tomography Based on Adaptive Support Driven Bayesian Reweighted Algorithm[J]. IEEE Sensors Journal, 2021, 21(18):20648-20656.
|
[14] |
YUE S H,WU D L, PAN J, et al.Fuzzy clustering based ET image fusion[J]. Information Fusion, 2013, 14(4): 487-497.
|
[17] |
LUSTING M, DONOHO D, PAULY J M. Sparse MRI:the application of compressed sensing for rapid MR imaging [J]. Magnetic Resonance in Medicine, 2007, 58(6):1182-1195.
|
[19] |
HUANG S, TRAN T. Sparse Signal Recovery via Generalized Entropy Functions Minimization[J]. IEEE Transactions on Signal Processing, 2019, 67(5):1322-1337.
|
|
ZHANG L F, ZHANG M H. ECT image reconstruction based on adaptive simulated annealing and LM joint inversion algorithm [J]. Chinese Journal of Scientific Instrument, 2021,42(12):228-235.
|
|
LIU Z X, WANG H G. Optimization of the number of capacitance tomography sensors in concentric ring area[J].Chinese Journal of Scientific Instrument, 2021,42(10):94-104.
|
[6] |
YE J M, WANG H G, YANG W Q. Image Reconstruction for Electrical Capacitance Tomography Based on Sparse Representation[J]. IEEE Transactions on Instrumentation and Measurement, 2015,64(1):89-102.
|
|
WANG W D, XU J H, ZHANG Z F, et al. Gaussian mixture model algorithm based on density peak clustering [J]. Computer Science, 2021,48(10):191-196.
|
[16] |
ZOU Y B, ZHANG J Y, UPADHYAY M, et al. Automatic Image Thresholding Based on Shannon Entropy Difference and Dynamic Synergic Entropy[J]. IEEE Access, 2020, 8:171218-171239.
|
[18] |
李凯, 张可心. 结构α-熵的加权高斯混合模型的子空间聚类[J]. 电子学报, 2022, 50(3):718-725.
|
|
LI K, ZHANG K X. Subspace clustering of weighted Gaussian mixture model with structure α-entropy [J]. Journal of Electronics, 2022,50(3):718-725.
|
|
|
|