|
|
Research on Mixed Overlapping Group Sparse for Multi-source Acoustic Emission Signal |
DENG Tao1,LIU Zhechao2, WANG Huazhang1,HE Lei1 |
1.西南民族大学 电气工程学院,四川 成都 610041
2.石家庄铁道大学交通工程结构力学行为与系统安全国家重点实验室, 河北 石家庄 050043 |
|
|
Abstract Acoustic emission detection of high-speed train body cracks involving multiple sources, overlapping wave modes, and noise interference, a mixed overlapping group sparse (MOGS) classification method with intrinsic mode function (IMF) is proposed for the identification of acoustic emission sources. MOGS is a structured sparse model that involve inter-and intra-group sparsity while allowing feature overlap between classes. A new noise pre-decomposition matrix is designed to reduce the computational complexity of IMFs. The IMF that include eigenfrequencies was selected as the sample to improve the difference between classes. MOGS dictionary was trained by the K-SVD with hierarchical group sparse lasso penalty function, and a separable block coordinates with approximate smoothing process method was proposed to solve MOGS lasso penalty function. Experiments show that the classification accuracy of this method is higher than 80%, the identification rate and waveform reconstruction effect are better than other algorithms.
|
Received: 20 September 2022
Published: 22 January 2024
|
|
|
|
|
[11] |
FAN Z Z, NI M, ZHU Q, et al. Weighted sparse Representation for face recognition[J]. Neurocomputing, 2015, 151: 304-309.
|
[6] |
邓韬, 林建辉, 黄晨光, 等. 基于索引冗余字典的轴承故障组稀疏分类方法研究[J]. 振动与冲击, 2019, 38(7): 1-8.
|
[13] |
徐金环, 沈煜, 刘鹏飞, 等. 联合核稀疏多元逻辑回归和TV-L1错误剔除的高光谱图像分类算法[J]. 电子学报, 2018, 46(1): 175-184.
|
[1] |
周航锐, 孙坚, 徐红伟, 等. 基于EEMD和低秩稀疏分解的超声缺陷回波检测方法[J]. 计量学报, 2022, 43(1): 77-84.
|
[2] |
张淑清, 乔永静, 姜安琦, 等. 基于CEEMD和GG聚类的电能质量扰动识别[J]. 计量学报, 2019, 40(1): 49-57.
|
[3] |
尚丽, 周燕, 孙战里. 应用一种多核稀疏表示模型实现掌纹分类[J]. 计量学报, 2021, 42(11): 1430-1435.
|
|
DENG T, LIN J H, HUANG C G, et al. Research on group sparse representation-based classification of bearing fault based on redundancy dictionary with index[J]. Journal of Vibration and Shock, 2019, 38(7): 1-8.
|
[10] |
练秋生, 齐秀梅, 陈书贞, 等. 基于结构稀疏性的单次曝光相位成像算法[J]. 电子与信息学报, 2017, 39(7): 1546-1553.
|
[16] |
李继猛, 李铭, 姚希峰, 等. 基于集合经验模式分解和K-奇异值分解字典学习的滚动轴承故障诊断[J]. 计量学报, 2020, 41(10): 1260-1266.
|
|
SHANG L, ZHOU Y, SUN Z L. Palmprint Classification Using a Multi Kernel Sparse Representation Model[J]. Acta Metrologica Sinica, 2021, 42(11): 1430-1435.
|
[4] |
LAXMI S, AUROBINDA R. Brain State Classification with Group l1-norm Sparse PDC as Novel Features for EEG[J]. IEEE Sensors Journal, 2021, 21 (12): 13506-13513.
|
|
MENG Z, YIN N, LI J. Fault Diagnosis of Rolling Bearing Based on Sparse Representation of Signals and Transient Impulse Signal Multifeature Extraction[J]. Acta Metrologica Sinica, 2019, 40(5): 855-860.
|
[8] |
MAJUMDAR A, RABAB K W. Fast group sparse classification [J]. Canadian journal of electrical and computer engineering, 2009, 34 (4): 136-144.
|
|
LIAN Q S, QI X M, CHEN S Z. Single-shot Phase Imaging Algorithm Based on Structural Sparsity[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1546-1553.
|
|
ZHANG T, TANG Z M. Improved Algorithm Based on Non-negative Low Rank and Sparse Graph for Semi-supervised Learning[J]. Journal of Electronics & Information Technology, 2017, 39(4): 915-921.
|
|
XU J H, SHEN Y, LIU P F, et al. Hyperspectral Image Classification Combining Kernel Sparse Multinomial Logistic Regression and TV-L1 Error Rejection[J]. Acta Electronica Sinica, 2018, 46(1): 175-184.
|
|
ZHENG J W, YANG P, WANG W L, et al. Kernel sparse representation classification with group weighted constraints[J]. Journal of Computer Research and Development, 2016, 53(11): 2567-2582.
|
|
LI J M, LI M, YAO X F, et al. Rolling bearing fault diagnosis based on Ensemble Empirical Mode Decomposition and K-Singular Value Decomposition Dictionary Learning[J]. Acta Metrologica Sinica, 2020, 41(10): 1260-1266.
|
|
ZHOU H R, SUN J, XU H W, et al. Ultrasonic Defect Echoes Identification Based on EEMD and Low-Rank Sparse Decomposition[J]. Acta Metrologica Sinica, 2022, 43(1): 77-84.
|
|
ZHANG S Q, QIAO Y J, JIANG A Q, et al. Power Quality Disturbance Identification Based on CEEMD and GG Clustering[J]. Acta Metrologica Sinica, 2019, 40(1): 49-57.
|
[5] |
孟宗, 殷娜, 李晶. 基于信号稀疏表示和瞬态冲击信号多特征提取的滚动轴承故障诊断[J]. 计量学报, 2019, 40(5): 855-860.
|
[7] |
ZHANG L, YANG M, FENG X C. Sparse representation or collaborative representation: which helps face recognition? [C]//IEEE International Conference on Computer Vision, 2011: 471-478.
|
[9] |
HUANG J S, ZHU Q, HAO X K. IEEE Journal of Biomedical and Health Informatics[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 23 (1): 342-350.
|
[12] |
张涛, 唐振民. 一种基于非负低秩稀疏图的半监督学习改进算法[J]. 电子与信息学报, 2017, 39(4): 915-921.
|
[14] |
郑建炜, 杨平, 王万良, 等. 组加权约束的核稀疏表示分类算法[J]. 计算机研究与发展, 2016, 53(11): 2567-2582.
|
[15] |
WU Z H, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1793-5369.
|
[17] |
CHEN X, LIN Q H, KIM S, et al. Smoothing Proximal Gradient Method for General Structured Sparse Learning[J]. The Annals of Applied Statistics, 2012, 6 (2): 719-752.
|
[18] |
SPRECHMANN P, BRONSTEIN A M, SAPIRO G. Learning efficient sparse and low rank models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1821-1833.
|
|
|
|