|
|
High Precision Near Infrared Fourier Spectrometer for Rapid Measurement of Oil Parameters |
FANG Xu1,2,LIU Xin1,LI Qi2,SHU Hui2,ZHANG Zhengdong2,CHENG Zhenying1,LI Ruijun1 |
1. Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
2. National Institute of Metrology, Beijing 100029, China |
|
|
Abstract A high precision near infrared Fourier (NIR) spectrometer for rapid measurement of oil parameters was developed to address the need for real time and accuracy in field testing of oil products. To quickly locate the effective signal, the coherent length amplification method was employed by the spectrometer; the Fourier NIR detection optical path was modulated by driving the acquisition control system to interfere at 100nm equal intervals; the final absorption spectrum resolution up to 3.25cm-1 was resolved by the Fourier inversion. The spectrometer was used to test the quality of gasoline samples, and the results showed that the spectrometer can quickly measure the content of five substances in gasoline in a short time, and its maximum volume error does not exceed 0.7%, which can meet the needs of on-site measurement of oil parameters and is of great significance for the supervision of the quality of refined oil products in the market.
|
Received: 31 March 2023
Published: 22 January 2024
|
|
|
|
|
[6] |
张文慧, 杜娟, 王晶. 近红外光谱技术在油品检测中的有效利用研究[J]. 中国标准化, 2018(8): 226-227.
|
[2] |
李轲, 杜彪, 肖哲, 等. 基于近红外光谱技术的油品快检方法研究进展[J]. 计量科学与技术, 2023, 66(12): 3-9.
|
[3] |
乔利民. 油品分析的常用技术[J]. 中国石油和化工标准与质量, 2019, 39(8): 234-236.
|
[4] |
李欢. 车用汽油质量分析及快速检测方法研究[D]. 成都: 西南石油大学, 2016.
|
|
ZHANG W H, DU J, WANG J. Research on the effective use of near infrared spectroscopy in oil product testing [J]. China Standardization, 2018(8): 226-227.
|
[5] |
徐喆. 近红外光谱技术在油品检测中的应用[J]. 中国石油和化工标准与质量, 2015, 35(24): 13-15, 23.
|
[9] |
罗真, 胡恒星. 核磁共振在线分析技术在催化装置油品分析中的应用[J]. 化工自动化及仪表, 2004, 31(4): 46-48.
|
[11] |
刘颖荣, 许育鹏, 杨海鹰. 基于单体烃分析的辛烷值测定方法中模糊聚类技术的应用研究[J]. 色谱, 2004, 22(5): 486-489.
|
[12] |
马天怡. 气相色谱法在油品分析中的应用[J]. 化工管理, 2021, (20): 46-47.
|
[1] |
陈辉荣. 汽油烃组分分析研究[D]. 武汉: 武汉工程大学, 2016.
|
[7] |
辛利, 杨朝合, 冯翔, 等. 全二维气相色谱-飞行时间质谱对催化裂化汽油的定性与定量分析[J]. 分析化学, 2017, 45(4): 489-494.
|
|
XIN L, YANG Z H, FENG X, et al. Qualitative and quantitative analysis of catalytically cracked gasoline by full two-dimensional gas chromatography coupled with time-of-flight mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2017, 45(4): 489-494.
|
|
MA T Y. Application of Gas Chromatography in Oil Product Analysis [J]. Chemical Management, 2021, (20): 46-47.
|
[14] |
李敬岩, 褚小立, 陈瀑, 等. 光谱自动检索算法在快速建立汽油光谱数据库中的应用[J]. 石油学报 (石油加工), 2017, 33(1): 131-137.
|
|
QIAO L M. Common techniques in oil analysis [J]. China Petroleum and Chemical Standard and Quality, 2019, 39(8): 234-236.
|
|
LUO Z, HU H X. Application of nuclear magnetic resonance online analysis technology in oil analysis of catalytic plants [J]. Control and Instruments in Chemical Industry, 2004, 31(4): 46-48.
|
[13] |
WANG H, CHU X, CHEN P, et al. Partial least squares regression residual extreme learning machine (PLSRR-ELM) calibration algorithm applied in fast determination of gasoline octane number with near-infrared spectroscopy[J]. Fuel, 2022, 309: 1-8.
|
|
WANG X H, ZHANG X, ZHANG W G, et al. Research Progress of Miniature Near Infrared Spectrometer [J]. Infrared Technology, 2020, 42(7): 688-696.
|
[17] |
王玲芳, 温志渝, 向贤毅. 近红外微型光谱仪光学系统设计与模拟[J]. 光谱学与光谱分析, 2009, 29(6): 1721-1725.
|
[18] |
杨琨. 傅里叶变换红外光谱仪若干核心技术研究及其应用[D]. 武汉: 武汉大学, 2010.
|
[19] |
吕洪震, 马若梦, 张亮, 等. 基于傅里叶红外光谱仪的高温含水烟气中低浓度一氧化氮精确测量研究[J]. 计量学报, 2021, 42(4): 526-531.
|
|
L H Z, MA R M, ZHANG L, et al. Research on Accurate Measurement of Low Concentration Nitric Oxide in High Temperature Water-containing Flue Gas Based on FTIR Spectrometer [J]. Acta Metrologica Sinica, 2021, 42(4): 526-531.
|
[20] |
童建平, 杨建武, 郑文强, 等. 阵列光电传感器的非线性校正[J]. 计量学报, 2019, 40(3): 416-420.
|
|
ZHANG Z L, ZHEN P, HE W Q, et al. Visible-NIR Fourier Transform Spectroscopy [J]. Journal of Instrumental Analysis, 1988(4): 12-16.
|
[23] |
LI K, ZHANG C, DU B, et al. Selection of the Effective Characteristic Spectra Based on the Chemical Structure and Its Application in Rapid Analysis of Ethanol Content in Gasoline[J]. ACS omega, 2022, 7(23): 20291-20297.
|
[27] |
李琪, 杜彪, 张正东, 等. 傅里叶变换近红外光谱仪在汽、柴油分析中的应用[J]. 计量科学与技术, 2022, 66(10): 20-27.
|
[29] |
李天宇. 转镜式近红外傅里叶变换光谱仪的同步过采样方法研究[D]. 天津: 天津大学, 2019.
|
[31] |
傅里叶变换红外光谱仪校准规范:JJF 1319-2011[S].
|
|
LI K, DU B, XIAO Z, et al. Research Progress of Rapid Oil Detection Method Based on Near Infrared Spectroscopy [J]. Metrology Science and Technology, 2023, 66(12): 3-9.
|
[8] |
OSIPOVS S. Comparison of efficiency of two methods for tar sampling in the syngas[J]. Fuel, 2013, 103: 387-392.
|
|
LI J Y, CHU X L, CHEN P, et al. Application of Spectral Automatic Retrieval Algorithm on the Rapid Establishment of Gasoline Spectral Database [J]. Acta Petrolei Sinica(Petroleum Processing Section), 2017, 33(1): 131-137.
|
|
TONG J P, YANG J W, ZHENG W Q, et al. Nonlinear Correction of Optoelectronic Array Sensor [J]. Acta Metrologica Sinica, 2019, 40(3): 416-420.
|
[25] |
LITANI-BARZILAI I, SELA I, BULATOV V, et al. On-line remote prediction of gasoline properties by combined optical methods[J]. Analytica chimica acta, 1997, 339(1-2): 193-199.
|
[26] |
LEAL A L, SILVA A M S, RIBEIRO J C, et al. Data driven models exploring the combination of NIR and 1H NMR spectroscopies in the determination of gasoline properties[J]. Microchemical Journal, 2022, 175: 1-10.
|
|
LI Q, DU B, ZHANG Z D, et al. Application of Fourier Transform Near-Infrared Spectrometer in Gasoline and Diesel Analysis[J]. Metrology Science and Technology, 2022, 66(10): 20-27.
|
[28] |
赵欣月, 林鸿, 杨雷, 等. 1.6微米附近氮气展宽的一氧化碳分子线形的研究[J]. 计量学报, 2017, 38(1): 13-18.
|
|
LI K, LU B, DU B, et al. Effective Selection and Application of Ethanol Characteristic Spectrum in Gasoline [J]. Metrology Science and Technology, 2022, 66(5): 19-24.
|
|
XU Z. Near infrared spectroscopy Applications in oil testing [J]. China Petroleum and Chemical Standard and Quality, 2015, 35(24): 13-15, 23.
|
|
LIU Y R, XU Y P, YANG H Y. Investigation of Fuzzy-Clustering in Octane Number Prediction Model Based on Detailed Hydrocarbon Analysis Data [J]. Chinese Journal of Chromatography, 2004, 22(5): 486-489.
|
|
WANG L F, WEN Z Y, XIANG X Y. Design and simulation of optical systems for near-infrared microspectrometers [J]. Spectroscopy and Spectral Analysis, 2009, 29(6): 1721-1725.
|
[24] |
LI M G, YAN C H, XUE J, et al. Rapid quantitative analysis of methanol content in methanol gasoline by near infrared spectroscopy coupled with wavelet transform-random forest[J]. Chinese Journal of Analytical Chemistry, 2019, 47(12): 1995-2003.
|
[32] |
李轲, 鲁冰, 杜彪, 等. 汽油中乙醇光谱特征谱段的有效选取及应用[J]. 计量科学与技术, 2022, 66(5): 19-24.
|
[10] |
MOLINA V D, ANGULO R, DUEEZ F Z, et al. Partial Least Squares (PLS) and Multiple Linear Correlations between Heithaus Stability Parameters (P o) and the Colloidal Instability Indices (CII) with the 1H Nuclear Magnetic Resonance (NMR) Spectra of Colombian Crude Oils[J]. Energy & fuels, 2014, 28(3): 1802-1810.
|
[16] |
陈孜. 基于线性渐变滤光片的便携式中红外光谱仪[D]. 南京: 南京航空航天大学, 2020.
|
[22] |
HONG S, WANG Y, CHEN A, et al. Rapid Assessment of Gasoline Quality by near-Infrared (NIR) Deep Learning Model Combined with Fractional Derivative Pretreatment[J]. Analytical Letters, 2022, 55(11): 1745-1756.
|
[30] |
GRIFFETHS P R, HASETH J A. Fourier transform infrared spectrometry second edition[M]. Hoboken: A John Wiley & Sons, 2007.
|
[15] |
王宿慧, 张旭, 张根伟, 等. 微型近红外光谱仪研究进展[J]. 红外技术, 2020, 42(7): 688-696.
|
[21] |
张知廉, 郑平, 何文琪, 等. 可见-近红外傅里叶变换光谱仪[J]. 分析测试学报, 1988(4): 12-16.
|
|
ZHAO X Y, LIN H, YANG L, et al. Inverstigation on line shape for N2-broadened CO near 1.6m[J]. Acta Metrologica Sinica, 2017, 38(1): 13-18.
|
[33] |
车用汽油国家标准:GB 17930-2016[S].
|
|
|
|