|
|
Global Thermal Network Model for Oil-immersed Transformers |
LU Fei1,SU Xiang2,LI Hua2,LIN Fuchang2,LU Yangze1 |
1. Electric Power Research Institute, State Grid Hubei Electric Power Corporation Limited, Wuhan, Hubei 430077, China
2. School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China |
|
|
Abstract The hot spot temperature is an important index to measure the insulation performance and safety margin of the transformer. It is of great significance to calculate it quickly and accurately. We analyzes the heat generation and heat transfer mechanism inside the oil-immersed transformer, the relationship between the velocity and temperature distribution and the fluid Prandt number Pr in the natural convection boundary layer are obtained. Considering the axial variation of local natural convection heat transfer coefficient and the difference of heat transfer characteristics in different regions, the oil-immersed transformer is divided and layered. Based on the thermoelectric analogy method, multiple types of thermal resistances are defined, and the global thermal network model of the oil-immersed transformer is constructed. The calculation results of the thermal network model are compared by finite element simulation. The temperature change trend of the windings obtained by the two is the same. The difference of the hot spot temperature is about 1.9%, and the difference of the hot spot position is about 7.7%. Compared with finite element simulation, the thermal network model has more advantages in solving time and efficiency. It can realize online monitoring, real-time analysis and dynamic evaluation of the operating status of oil-immersed transformers.
|
Received: 21 August 2022
Published: 22 January 2024
|
|
|
|
|
[12] |
贾丹平, 赵璐, 皇甫丽影. 变压器绕组热点温度监测技术研究 [J]. 计量学报, 2022, 43 (2): 235-241.
|
|
TANG Z, LIU X D. Calculation of Hot Spot Temperature of Dry-type Transformer Winding Based on Thermal Circuit Model [J]. Electric Engineering, 2021 (13): 24-28.
|
[2] |
魏建林, 王世强, 吴凤娇, 等. 变压器绝缘老化引起预试电气绝缘参数变化的仿真研究 [J]. 高电压技术, 2009, 35 (10): 1618-1623.
|
[7] |
钱政, 孙焦德, 袁克道, 等. 电力变压器绕组热点状态的在线监测技术 [J]. 高电压技术, 2003, 29 (9): 26-28.
|
[8] |
刘军, 陈伟根, 赵建保. 基于光纤光栅传感器的变压器内部温度测量技术[J]. 高电压技术, 2009, 35 (3): 104-108.
|
[9] |
油浸式电力变压器负载导则:GB/T 15164—1994[S]. 1994.
|
[5] |
COENEN S, TENBOHLEN S, MARKALOUS S M, et al. Sensitivity of UHF PD measurements in power transformers [J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2008, 15 (6): 1553-1558.
|
[6] |
MCNUTT W J, MCLVER J C, LEIBINGER G E, et al. Direct measurement of transformer winding hot spot temperature [J]. IEEE transactions on power apparatus and systems, 1984, 4 (6): 26-27.
|
|
XU J, LIU S X. Modeling and Simulation Analysis of Transformer Hot Spot Temperature Based on Multi Physical Field Coupling and Temperature Rise Characteristics [J]. Acta Metrologica Sinica, 2022, 43 (2): 242-249.
|
|
JIA D P, ZHAO L, HUANGFU L Y. Research on Hot Spot Temperature Monitoring Technology of Transformer Winding [J]. Acta Metrologica Sinica, 2022, 43 (2): 235-241.
|
[20] |
文贺敏. 基于热电类比法的油浸式变压器绕组温度分布特性研究 [D]. 昆明: 昆明理工大学, 2018.
|
[21] |
岳国良. 油浸式电力变压器负载能力在线评估及冷却控制策略研究 [D]. 北京: 华北电力大学, 2015.
|
[25] |
朱谷君. 工程传热传质学 [M]. 北京: 北京航空工业出版社, 1989.
|
|
DU L, YUAN L, XIONG H, et al. Extension Hierarchy Assessment for Operating Condition of Power Transformer [J]. High Voltage Engineering, 2011, 37 (4): 897-903.
|
[11] |
王奕玲. 基于COMSOL的大型油浸式变压器绕组温度场数值分析 [D]. 天津: 河北工业大学, 2019.
|
[13] |
SWIFT G, MOLINSKI T S, LEHN W. A fundamental approach to transformer thermal modeling. I. Theory and equivalent circuit [J]. IEEE transactions on Power Delivery, 2001, 16 (2): 171-175.
|
[15] |
SUSA D, LEHTONEN M, NORDMAN H. Dynamic thermal modelling of power transformers [J]. IEEE transactions on Power Delivery, 2005, 20 (1): 197-204.
|
[17] |
SUSA D, LEHTONEN M, NORDMAN H. Dynamic Thermal Modeling of Power Transformers: Further Development-part II [J]. IEEE Transactions on Power Delivery, 2006, 21 (4): 1971-1980.
|
|
YUAN S, ZHOU L J, GOU X F, et al. Train Induced Wind Cooling Convection Heat Transfer Calculation and Winding Area Thermal Network Modeling of Dry-type On-board Traction Transformer [J/OL]. Proceedings of the CSEE: 1-12[2022-03-30].
|
[19] |
唐钊, 刘轩东. 基于热路模型的干式变压器绕组热点温度计算 [J]. 电工技术, 2021 (13): 24-28.
|
|
TIAN M Q, ZHU J J, SONG J C, et al. Temperature Field Simulation of Coal Dry-type Transformer Based on Fluid-solid Coupling Analysis [J]. High Voltage Engineering, 2016, 42 (12): 3972-3981.
|
|
ZHAO Z G, XU M, HU X J. Research on Magnetic Losses Characteristics of Ferromagnetic Materials Based on Improvement Loss Separation Model [J]. Transactions of China Electrotechnical Society, 2021, 36 (13): 2782-2790.
|
[26] |
刘鉴民. 传热传质原理及其在电力科技中的应用 [M]. 北京: 中国电力出版社, 2006.
|
[1] |
余涛,唐国保,徐承业.干式电力变压器技术与应用 [M]. 北京:中国电力出版社, 2008.
|
|
QIAN Z, SUN J D, YUAN K D, et al. On-line Monitoring of Hot-Spot Temperature in Transformer Winding [J]. High Voltage Engineering, 2003, 29 (9): 26-28.
|
[14] |
SWIFT G, MOLINSKI T S, BRAY R, et al. A fundamental approach to transformer thermal modeling. II. Field verification [J]. IEEE transactions on Power Delivery, 2001, 16 (2): 176-180.
|
[22] |
田慕琴, 朱晶晶, 宋建成, 等. 基于流固耦合分析的矿用干式变压器温度场仿真 [J].高电压技术, 2016, 42 (12): 3972-3981.
|
[3] |
曾非同, 关向雨, 黄以政, 等. 基于多尺度多物理场的油浸式变压器流动-传热数值研究 [J]. 电工技术学报, 2020, 35 (16): 3436-3444.
|
[4] |
杜林, 袁蕾, 熊浩, 等.电力变压器运行状态可拓层次评估 [J]. 高电压技术, 2011, 37 (4): 897-903.
|
|
ZENG F T, GUAN X Y, HUANG Y Z, et al. Numerical Study on Flow-Heat Transfer of Oil-Immersed Transformer Based on Multiple-Scale and Multiple-Physical Fields [J]. Transactions of China Electrotechnical Society, 2020, 35 (16): 3436-3444.
|
[10] |
许静, 刘树鑫. 基于多物理场耦合及温升特性研究的变压器热点温度建模与仿真分析 [J]. 计量学报, 2022, 43 (2): 242-249.
|
[18] |
袁帅, 周利军, 勾小凤, 等.干式车载牵引变压器列车风冷却对流传热计算与绕组区域热网络建模 [J]. 中国电机工程学报, 2022, 43 (15): 5719-5729.
|
[24] |
陶文铨. 传热学 [M]. 北京: 高等教育出版社, 2006.
|
|
WEI J L, WANG S Q, WU F J, et al. Simulation on Variation of Electrical Insulation Parameters in Predictive Test Caused by Insulation Aging of Power Transformer [J]. High Voltage Engineering, 2009, 35 (10): 1618-1623.
|
|
LIU J, CHEN W G, ZHAO J B, et al. Measuring Technology of Transformer Internal Temperature Based on FBG Sensors [J]. High Voltage Engineering, 2009, 35 (3): 104-108.
|
[16] |
SUSA D, LEHTONEN M, NORDMAN H. Dynamic Thermal Modeling of Power Transformers: Further Development—Part I [J]. IEEE Transactions on Power Delivery, 2006, 21 (4): 1961-1970.
|
[23] |
赵志刚, 徐曼, 胡鑫剑. 基于改进损耗分离模型的铁磁材料损耗特性研究 [J]. 电工技术学报, 2021, 36 (13): 2782-2790.
|
[27] |
GOLDSTEIN R J, LAU K S. Laminar natural convection from a horizontal plate and the influence of plate-edge extensions [J]. Journal of Fluid Mechanics, 1983, 129: 55-75.
|
|
|
|