|
|
Improved SIFT Feature Matching Algorithm with Geometric Feature Constraints |
ZHANG Xi-min1,2,ZHAN Hai-sheng2,YU Qi-ying2 |
1. School of Information Engineering, Shaanxi Institute of International Trade & Commerce, Xi’an,
Shaanxi 712046, China
2. School of Computer Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China |
|
|
Abstract The accuracy of image registration directly affects the accuracy of machine vision dimension detection. Aiming at the fact that scale-invariant feature transform(SIFT) feature transform algorithm was less involved the geometric relationship between feature points, and it was easy to generate mismatch points for the capture image with smooth varied grayscale, such as small widget, an improved SIFT feature matching algorithm with geometric feature constraints was proposed. Firstly, the target contour profile was extracted by the image tracking algorithm based on boundary topology analysis. Secondly, the SIFT algorithm was constrained by geometric contour profiles of images, and the Random sample consensus(RANSAC) algorithm was taken to remove outlier point pairs. Finally, image accurate registration transformation was performed by calculated transformation matrix. A machine vision precision detection and measurement system were developed based on high-resolution industrial camera and high-performance computer, and experiments were carried out on the USB interface plug-in parts of mobile phone as samples. The experimental results showed that the accuracy of image registration of this algorithm can reach 95.31%. Compared with SIFT algorithm and SIFT+RANSAC algorithm, the registration accuracy was greatly improved. The algorithm has been applied to develop an automation dimension detection and measurement system.
|
Received: 04 August 2022
Published: 22 August 2023
|
|
|
|
|
[17] |
丁国绅, 乔延利, 易维宁, 等. 基于光谱图像空间的改进SIFT特征提取与匹配[J]. 北京理工大学学报, 2022, 42(2): 192-199.
|
[4] |
刘斌, 董正天,胡春海,等. 基于机器视觉的丝网印刷样板尺寸测量方法[J]. 计量学报, 2021, 42(2): 150-156.
|
[7] |
陈雪松, 陈秀芳, 毕波, 等. 基于改进SURF的图像匹配算法[J]. 计算机系统应用, 2020, 29(12): 222-227.
|
[8] |
张文卿, 李为相, 李为, 等. 改进的SURF特征快速匹配算法[J]. 计算机工程与设计, 2019, 40(12): 3526-3532.
|
|
Ren Y Q, Chen K C, ZHang W X. Gear Image Feature Matching Optimization Based on Machine Vision[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2022(2): 33-35.
|
[1] |
张喜民, 余奇颖, 张金博, 等. 基于机器视觉的手机尾插件精密测量方法研究[J]. 仪器仪表学报, 2019, 40(10): 47-54.
|
[10] |
余奇颖. 基于机器视觉的手机尾插精密测量系统研究与实现[D]. 西安: 西安电子科技大学, 2019.
|
[16] |
陈抒瑢, 李勃, 董蓉, 等. Contourlet-SIFT特征匹配算法[J]. 电子与信息学报, 2013, 35(5): 1215-1221.
|
[5] |
舒子超, 曹松晓, 蒋庆, 等. 基于3D视觉的微通道换热器定位与尺寸测量[J]. 计量学报, 2022, 43(9): 1128-1134.
|
|
Jia D, Zhu N D, Yang N H, et al. Image Matching Methods[J]. Journal of Image and Graphics, 2019, 24(5): 677-699.
|
[2] |
冯锴. 基于机器视觉的金属手机外壳尺寸测量与表面典型缺陷检测研究[D]. 广州: 华南理工大学, 2018.
|
[3] |
李渊. 基于机器视觉的智能手环壳体几何尺寸测量系统研究[D]. 广州: 广东工业大学, 2017.
|
|
Zhang X M, Yu Q Y, Zhang J B, et al. Research on Precision Measurement Method for Mobile Phone Tail Plug Based on Machine Vision[J]. Chinese Journal of Scientific Instrument, 2019, 40(10): 47-54.
|
|
Liu B, Dong Z T, Hu C H, et al. Measurement Method of Screen Printing Template Size Based on Machine Vision[J]. Acta Metrologica Sinica, 2021, 42(2): 150-156.
|
[6] |
任永强, 陈康琛, 张闻箫. 基于机器视觉的齿轮图像特征匹配优化[J]. 组合机床与自动化加工技术, 2022(2): 33-35.
|
[11] |
贾雯晓, 张贵仓, 汪亮亮, 等. 基于SIFT和改进的RANSAC图像配准算法[J]. 计算机工程与应用, 2018, 54(2): 203-207.
|
[19] |
杨琼楠, 马天力, 杨聪锟,等. 基于优化采样的 RANSAC图像匹配算法[J]. 激光与光电子学进展, 2020, 57(10): 259-266.
|
|
Zhang W Q, Li W X, Li W, et al. Improved SURF Feature Fast Matching Algorithm[J]. Computer Engineering and Design, 2019, 40(12): 3526-3532.
|
[13] |
Zhao M, An B, Wu Y, et al. A Robust Delaunay Triangulation Matching for Multispectral/multidate Remote Sensing Image Registration[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 711-715.
|
[14] |
Lee I H, Mahmood M T. Adaptive Outlier Elimination in Image Registration Using Genetic Programming[J]. Information Sciences, 2017, 42(1): 204-217.
|
[15] |
孙健钧, 赵岩, 王世刚. 基于图像梯度信息强化的SIFT特征匹配算法改进[J]. 吉林大学学报(理学版), 2018, 56(1): 82-88.
|
|
Chen S R, Li B, Dong R, et al. Contourlet-SIFT Feature Matching Algorithm[J]. Journal of Electronics & Information Technology, 2013, 35(5): 1215-1221.
|
|
Ding G S, Qiao Y L, Yi W N, et al. Improved SIFT Feature Extraction and Matching Based on Spectral Image Space[J]. Transactions of Beijing Institute of Technology, 2022, 42(2): 192-199.
|
|
Yang Q L, Ma T L, Yang C K, et al. RANSAC Image Matching Algorithm Based on Optimized Sampling[J]. Laser & Optoelectronics Progress, 2020, 57(10): 259-266.
|
[20] |
Tran Q H, Chin T J, Carneiro G, et al. In Defence of RANSAC for Outlier Rejection in Deformable Registration[C]//Proceedings of the 2012 European Conference on Computer Vision, Florence, Italy, 2012(4): 274-287.
|
|
Cheng X H, Li J J. Optimized Image Feature Matching Algorithm Based on Motion Smoothness and RANSAC[J]. Journal of Chinese Inertial Technology, 2019, 27(6): 765-770.
|
|
Chen X S, Chen X F, Bi B, et al. Image Matching Algorithm Based on Improved SURF[J]. Computer Systems & Applications, 2020, 29(12): 222-227.
|
[12] |
Wu Y, Ma W, Gong M, et al. A Novel Point-matching Algorithm Based on fast Sample Consensus for Image Registration[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 12(1): 43-47.
|
[18] |
Guo, X K, Yang, J, Lin, H. Image Registration Method Based on Improved SIFT Algorithm and Essential Matrix Estimation[C] //2017 IEEE International Conference on Information and Automation (ICIA), Macao, China, 2017: 814-815.
|
|
Shu Z C, Cao S X, Jiang Q, et al. Positioning and Dimension Measurement of Micro-channel Heat Exchangers Based on 3D Vision [J]. Acta Metrologica Sinica, 2022, 43(9): 1128-1134.
|
[9] |
贾迪, 朱宁丹, 杨宁华, 等. 图像匹配方法研究综述[J]. 中国图象图形学报, 2019, 24(5): 677-699.
|
|
Jia W X Zhang G C, Wang L L, et al. Image Registration Algorithm Based on SIFT and Improved RANSAC[J]. Computer Engineering and Applications, 2018, 54(2): 203-207.
|
|
Sun J J, Zhao Y, Wang S G. Improvement of SIFT Feature Matching Algorithm Based on Image Gradient Information Enhancement[J]. Journal of Jilin University Science Edition, 2018, 56(1): 82-88.
|
[21] |
程向红, 李俊杰. 基于运动平滑性与RANSAC优化的图像特征匹配算法[J]. 中国惯性技术学报, 2019, 27(6): 765-770.
|
|
|
|