|
|
Scanning Path Planning and Measurement of Focused Transducer Focal area sound field |
DUAN Xue-liang1,ZHENG Hui-feng1,PENG Yuan1,GUO Zhong-xiao2,ZHU Jie3 |
1. College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
2. Jiaxing Metrological Verification and Testing Institute, Jiaxing, Zhejiang 314050, China
3. ZF Transmission Technology (Jiaxing) Co., Ltd., Jiaxing, Zhejiang 314000, China |
|
|
Abstract The focus area sound pressure scanning of a focused transducer is an important step in the measurement of its acoustic characteristics, while the traditional scanning path measurement is inefficient. A scanning path planning method based on the distribution characteristics of the focused sound field is proposed.First, the experimental scheme and principle are given, the focus area sound field characteristics of the focused transducer sound field are analyzed, and then finite element simulation analysis is carried out for the focusing transducer, according to the concentric circle distribution characteristics of the sound field, the corresponding areas of different sound pressure levels are obtained as the hydrophone scanning characteristic areas with the focus being 0dB sound pressure level. Finally, an experimental system is built,the experimental results show that the parameters such as -6dB focal length and width are consistent with the theoretical values and the measured values of traditional mechanical measuring mechanisms, the measurement accuracy is guaranteed and the measurement efficiency is effectively improved.
|
Received: 07 December 2022
Published: 17 July 2023
|
|
|
|
|
[1] |
隋永杰. 超声探头声场参数测量的研究[D]. 北京: 北京化工大学, 2013.
|
|
Yu W L, Cao Y G, Zheng H F, et al. Study on beam characteristics of acoustic lens focusing phased array transducer [J]. Journal of Sensing Technology, 2019, 32 (7): 991-995.
|
[4] |
周真祥. 超声换能器声场特性自动化检测技术的研究[D]. 杭州: 浙江大学, 2016.
|
|
Li G Z. Machine vision will be integrated with multi domain technologies [J]. Modern Manufacturing, 2013 (3): 11.
|
[7] |
GB/T 16540—1996 声学在0.5~15MHz频率范围内的超声场特性及其测量水听器法[S]. 1996.
|
[12] |
赵业和, 刘达新, 刘振宇, 等. 基于多种群竞争松鼠搜索算法的机械臂时间最优轨迹规划[J]. 浙江大学学报(工学版), 2022, 56(12): 2321-2329, 2402.
|
|
Yang Jintao, Jiang Wengang, Lin Yongcai Trajectory planning algorithm for optimal impact of industrial robots [J] Science, Technology and Engineering, 2014, 14(28): 70-75
|
[3] |
李荣基, 赵鹏, 王月兵, 等. 球壳换能器电声效率测量方法研究[J]. 计量学报, 2020, 41(12): 1521-1528.
|
[6] |
彭圆, 郑慧峰, 董照诚, 等. 基于机器视觉的聚焦换能器焦点快速定位研究[J]. 计量学报, 2022, 43(10): 1313-1318.
|
[16] |
赖啸, 刘勇. 笛卡尔和关节空间联合轨迹规划研究[J]. 机械传动, 2017, 41(1): 142-145.
|
[20] |
刘松国. 六自由度串联机器人运动优化与轨迹跟踪控制研究[D]. 杭州: 浙江大学, 2009.
|
[5] |
李国忠. 机器视觉将与多领域技术融合[J]. 现代制造, 2013(3): 11.
|
|
Zheng W, Wang H, Wang H B. Adaptive Step Size Informed-RRT* and Artificial Potential Field Algorithm for Hybrid Path Planning of Robot[J]. Acta Metrologica Sinica, 2023, 44(1): 26-34.
|
[9] |
Bazaz S A, Tondu B. Minimum time on-line joint trajectory generator based on low order spline method for industrial manipulators[J]. Robotics and Autonomous Systems, 1999, 29(4): 257-268.
|
|
Wang X R, Xue Z, Huang Y, et al. Trajectory Planning Based on Traceability of Spatial Pose Measurement Equipment[J]. Acta Metrologica Sinica, 2020, 41(10): 1184-1191.
|
[11] |
Boscariol P, Richiedei D, Tamelin I. Residual vibration suppression in uncertain systems: a robust trajectory planning structure modification method [J]. Robot and Computer Integrated Manufacturing, 2022, 74: 102282.
|
[18] |
王丽燕. UR10工业机械臂动力学分析[D]. 杭州: 浙江理工大学, 2020.
|
|
Li R J, Zhao P, Wang Y B, et al. Research on measurement method of electroacoustic efficiency of spherical shell transducer [J]. Acta Metrologica Sinica, 2020, 41 (12): 1521-1528.
|
[10] |
王馨蕊, 薛梓, 黄垚, 等. 基于空间位姿测量设备溯源的轨迹规划[J]. 计量学报, 2020, 41(10): 1184-1191.
|
|
Zhao Y H, Liu D X, Liu Z Y, et al. Time optimal trajectory planning of manipulator based on multi-group competitive squirrel search algorithm [J]. Journal of Zhejiang University (Engineering Edition), 2022, 56 (12): 2321-2329, 2402.
|
|
Lai X, Liu Y. Joint Cartesian and Joint Space Trajectory Planning [J]. Mechanical transmission, 2017, 41 (1): 142-145.
|
[2] |
於炜力, 曹永刚, 郑慧峰, 等. 声透镜聚焦相控阵换能器的波束特性研究[J]. 传感技术学报, 2019, 32(7): 991-995.
|
[8] |
郑维, 王昊,王洪斌. 动态环境下基于自适应步长Informed-RRT*和人工势场法的机器人混合路径规划[J]. 计量学报, 2023, 44(1): 26-34.
|
[14] |
Han S, Shan X, Fu J, et al. Industrial robot trajectory planning based on improved pso algorithm [J]. Journal of Physics: Conference Series, 2021, 1820(1): 012185 .
|
|
Peng Y, Zheng H F, Dong Z C, et al. Research on fast focus location of focusing transducer based on machine vision [J]. Acta Metrologica Sinica, 2022, 43 (10): 1313-1318.
|
[13] |
杨锦涛, 姜文刚, 林永才. 工业机器人冲击最优的轨迹规划算法[J]. 科学技术与工程, 2014, 14(28): 70-75.
|
[15] |
Buschhaus A, Krusemark S, Karlidag E, et al. Universal fine interpolation algorithms for accuracy improvements of industrial robots[C]//Lisbon, Portugal: IEEE International Congress on Ultra Modern Telecommunications & Control Systems & Workshops, 2016: 356-362.
|
[17] |
Rossi C, Savino S. Robot trajectory planning by assigning positions and tangential velocities[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(1): 139-156.
|
[19] |
郑启强. 基于视觉引导的工业机器人贴标系统研究[D]. 福州: 福建工程学院, 2020.
|
|
|
|