|
|
Estimation of Safety Coefficient of the Logarithmic Evaluation Method of Uncertainty in Electromagnetic Compatibility Test |
HUANG Jie-yi1,LUO Zai1,CHENG Yin-bao1,WU Jun2,YUAN Ke-feng3 |
1. China Jiliang University, Hangzhou, Zhejiang 310018, China
2. Institute of Energy Measurement Technology,Anhui Institute of Metrology,
Hefei, Anhui 230009, China
3. Zhejiang Testing&Inspection Institute for Mechanical and Electrical Products Quality Co. Ltd, Hangzhou, Zhejiang 310051, China |
|
|
Abstract With the popularization of electromagnetic compatibility certification, the discussion on measurement uncertainty in the electromagnetic compatibility field is increasing.At present, there are still controversies about the use of logarithmic units and linear units in electromagnetic compatibility tests, and there is also no reference standard for the evaluation of logarithmic units in GUM.In view of this situation, through the discussion of lognormal and linear normal, a safety factor estimate t related to the logarithmic unit standard deviation and the value of the number of measurements is obtained.Taking the mean value of the logarithmic unit evaluation as the final benchmark, the safety factor can extend the evaluation interval of the lognormal distribution, so that the evaluation result can be expanded as small as possible, and the evaluation result of the linear unit can be fully included.After eliminating the dispute between the linear unit and the logarithmic unit in the evaluation result, the uncertainty result is safer and more reliable.
|
Received: 29 December 2021
Published: 25 June 2023
|
|
|
|
|
[1] |
张宇岳. 电气电子产品主要认证标准的电磁兼容性测试与分析 [D]. 厦门:华侨大学, 2018.
|
[2] |
赵品彰. 适配器对电磁兼容射频传导耦合去耦网络阻抗测量的影响 [J]. 计量学报, 2019, 40 (4): 704-707.
|
[6] |
JJF 1059. 2—2012, 测量不确定度评定与表示[S]. 2012.
|
[10] |
Bronaugh E L, Osburn J. Estimating EMC measurement uncertainty using logarithmic terms[C]//IEEE International Symposium on Electromagnetic Compatibility.1999.
|
[15] |
JJF 1059. 2—2012, 用蒙特卡洛法评定测量不确定度[S]. 2012.
|
|
Zhao P Z. The Impact of the Adapters on Impedance Measurement of EMC RF Conducted Coupling-Decoupling Network [J]. Acta Metrologica Sinica, 2019, 40 (4): 704-707.
|
[3] |
贺青, 邵海明, 梁成斌. 电磁计量学研究进展评述 [J]. 计量学报, 2021, 42 (11): 1543-1552.
|
[4] |
李秉臻. 计量设备电磁辐射抗扰度试验系统的研制 [D]. 太原:中北大学, 2018.
|
|
Cheng Y B, Chen X H, Wang Z Y, et al. Uncertainty Analysis and Evaluation of Form Measurement Task for CMM [J]. Acta Metrologica Sinica, 2020, 41 (2): 134-138.
|
[11] |
Carobbi C, Cati M, Millanta L M. Using the log-normal distribution in the statistical treatment of experimental data affected by large dispersion[C]//IEEE International Symposium on Electromagnetic Compatibility. 2003.
|
[13] |
Carobbi C F M. The GUM Supplement 1 and the uncertainty evaluations of EMC measurements [J]. IEEE-EMC Newsletter, 2010(225): 53-57.
|
|
He Q, Shao H M, Liang C B. Review on the Research Progress of Electromagnetic Metrology [J]. Acta Metrologica Sinica, 2021, 42 (11): 1543-1552.
|
[5] |
裘乐明. 音视频产品3C认证电磁兼容中传导骚扰检测与分析 [D]. 广州:华南理工大学, 2016.
|
[7] |
程银宝, 陈晓怀, 王中宇, 等. CMM形状测量任务的不确定度分析与评定 [J]. 计量学报, 2020, 41 (2): 134-138.
|
[8] |
CNAS-GL07, 电磁干扰测量中不确定度的评定指南[S]. 2006.
|
[9] |
GB/T 6113. 402—2018, 无线电骚扰和抗扰度测量设备和测量方法规范第4~2部分:不确定度、统计学和限值建模测量设备和设施的不确定度[S]. 2018.
|
[12] |
Carobbi C F. The use of logarithmic units in the uncertainty evaluations of EMC measurements [J]. IEEE-EMC Newsletter, 2010(224): 46-50.
|
[14] |
Carobbi C, Lallechere S, Arnaut L R. Review of uncertainty quantification of measurement and computational modeling in emc part i: measurement uncertainty [J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(6):1690-1698.
|
[16] |
王舵. 基于Python软件的蒙特卡洛法不确定度评定 [J]. 化学分析计量, 2021, 30 (6): 80-84.
|
[17] |
何纯全, 赵炳秋, 万海军. 基于自适应蒙特卡洛法的磁场辐射发射测量不确定度评定 [J]. 电子测量技术, 2019, 42 (1): 31-34.
|
|
He C Q, Zhao B Q, Wan H J. Magnetic field radiated emissions measurement uncertainty evaluation using adaptive Monte Carlo method [J]. Electronic Measurement Technology, 2019, 42 (1): 31-34.
|
|
Wang D. Evaluation of measurement uncertainty by Monte Carlo method based on Python software [J]. Chemical Analysis and Meterage, 2021, 30 (6): 80-84.
|
|
|
|