|
|
Flow Pattern Identification of Gas-Liquid Two-phase Flow Based on Deep Forest and Electrical Resistance Tomography |
ZHANG Li-feng,TONG Tong,XIAO Kai |
Department of Automation, North China Electric Power University, Baoding, Hebei 071003, China |
|
|
Abstract A flow pattern identification method of gas-liquid two-phase flow based on deep forest algorithm and electrical resistance tomography (ERT) was proposed. Firstly, ERT experimental device was used to collect data of four typical flow patterns, and the collected data was preprocessed by averaging multi-frame data. Then, some proper basic classifiers were selected to construct a deep forest model, and the maximum number of layers of the model was adjusted to ensure the accuracy of classification. Finally, the validity of multi-frame data averaging and the flow pattern identification ability of deep forest model were verified, and compared with two traditional deep learning algorithms, deep neural network and convolutional neural network. The results show that the accuracy of flow pattern identification of deep forest is better than that of other two algorithms, and the average identification accuracy can reach 98.75%. The preprocessing method of multi-frame data averaging is more conducive to flow pattern identification.
|
Received: 14 February 2022
Published: 25 June 2023
|
|
|
|
|
[12] |
陈剑, 蔡坤奇, 陶善勇, 等. 基于IITD模糊熵与随机森林的滚动轴承故障诊断方法[J]. 计量学报, 2021, 42(6):774-779.
|
[13] |
李光一, 李海萍, 万华伟, 等. 随机森林算法在新疆物种丰富度影响因素研究中的应用[J]. 中国环境科学, 2021, 41(2):941-950.
|
|
Zhang L F, Zhu Y F. Two phase flow pattern identification based on MO-PLP-ELM and electrical capacitance tomography[J]. Acta metrologica Sinica, 2021, 42(3):334-338.
|
[2] |
张立峰, 王化祥. 基于SVM及电容层析成像的两相流流型识别[J]. 仪器仪表学报, 2009, 30(4): 812-816.
|
|
Hu H L, Tang K H, Tang C H, et al. Principle and application of two-phase flow parameter detection based on capacitance sensor [J]. Journal of Northwest University, 2019, 49 (5): 681-690.
|
|
Sun H L, Li Y L, Liu C L, et al Electrical resistance tomography technology and its application in hydrate mining simulation experiment[J]. Acta Metrologica Sinica, 2019, 40 (3): 455-461.
|
[7] |
Guo W, Liu C P, Wang L. Temperature fluctuation on pipe wall induced by gas-liquid flow and its application in flow pattern identification[J]. Chemical Engineering Science, 2021, 237:116568.
|
[8] |
吴新杰, 黄国兴, 王静文. 压缩感知在电容层析成像流型辨识中的应用[J]. 光学精密工程, 2013, 21(4): 1062-1068.
|
|
Tong W G, Pang X C, Zhu G H. Gas-liquid Two-phase Flow Pattern Recognition Method Based on Convolutional Neural Network [J]. Journal of System Simulation, 2021, 33(4):883-891.
|
|
Li G Y, Li H P, Wan H W, et al. Application of random forest algorithm in the study of influencing factors of species richness in Xinjiang [J]. China Environmental Science, 2021,41 (2): 941-950.
|
|
Jin K G, Yu D J. Protein contact graph prediction based on Weighted Naive Bayes classifier and extreme random tree [J]. Journal of Nanjing University of Aeronautics and Astronautics, 2018, 50(5):619-628.
|
[1] |
张立峰, 朱炎峰. 基于MO-PLP-ELM及电容层析成像的两相流流型辨识[J]. 计量学报, 2021, 42(3): 334-338.
|
[3] |
王小鑫, 王博, 陈阳正, 等.基于电容层析成像技术重构图像的两相流流型识别[J].计量学报, 2020, 41(8):942-946.
|
[6] |
Cultrera A, Milano G, De L N, et al. Recommended implementation of electrical resistance tomography for conductivity mapping of metallic nanowire networks using voltage excitation[J]. Scientific Reports, 2021, 11(1):13162-13167.
|
[9] |
李凯锋, 王保良, 黄志尧, 等. k-均值聚类在CCERT系统流型辨识中的应用[J]. 北京航空航天大学学报, 2017, 43(11):2280-2285.
|
|
Chen J, Cai K Q, Tao S Y, et al. Rolling bearing fault diagnosis method based on IITD fuzzy entropy and random forest[J]. Acta Metrologica Sinica, 2021,42(6):774-779.
|
|
Liu S G, Dong X, Lou X, et al. Classification and density inversion of wetland plants based on Optimization of random forest characteristic variables [J]. Journal of Tongji University:Natural Science, 2021, 49(5):695-704.
|
[18] |
张又文, 冯斌, 陈页, 等. 基于遗传算法优化XGBoost的油浸式变压器故障诊断方法[J]. 电力自动化设备, 2021, 41(2):200-206.
|
|
Wang X X, Wang B, Chen Y Z, et al. Two phase flow pattern recognition based on reconstructed image of electrical capacitance tomography [J]. Acta Metrologica Sinica, 2020, 41(8):942-946.
|
[5] |
孙海亮, 李彦龙, 刘昌岭, 等. 电阻层析成像技术及其在水合物开采模拟实验中的应用[J]. 计量学报, 2019, 40(3):455-461.
|
|
Li K F, Wang B L, Huang Z Y, et al. Application of k-means clustering in flow pattern identification of CCERT system [J]. Journal of Beijing University of Aeronautics and Astronautics: Natural Science, 2017, 43 (11): 2280-2285.
|
[11] |
Mao S S, Yang J Y, Gou S P, et al. Multi-Scale Fused SAR Image Registration Based on Deep Forest[J]. Remote Sensing, 2021, 13(11):2227.
|
[15] |
Xu Y H, Zhao X, Chen Y S, et al. Research on a Mixed Gas Classification Algorithm Based on Extreme Random Tree[J]. Applied Sciences, 2019, 9(9):1728.
|
[17] |
徐伟, 夏志祥, 行鸿彦. 基于集成经验模态分解和极端梯度提升的雷电预警方法[J]. 仪器仪表学报, 2020, 41(8):235-243.
|
[19] |
Xu C L, Liu X B, Wang H K, et al. A study of predicting irradiation-induced transition temperature shift for RPV steels with XGBoost modeling[J]. Nuclear Engineering and Technology, 2021, 53(8):2610-2615.
|
[21] |
Fan Y, Qi L, Tie Y. The Cascade Improved Model Based Deep Forest for Small-scale Datasets Classification [J]. International Symposium on Next Generation Electronics, 2019, 8(10):1-3.
|
|
Zhang L F, Wang H X. Two phase flow pattern recognition based on SVM and electrical capacitance tomography [J]. Journal of instrumentation, 2009, 30 (4): 812-816.
|
[4] |
胡红利, 唐凯豪, 唐晨晖, 等. 基于电容传感器的两相流参数检测原理及应用[J]. 西北大学学报, 2019, 49(5):681-690.
|
|
Wu X J, Huang G X, Wang J W. Application of compressed sensing in flow pattern identification of electrical capacitance tomography [J]. Optical precision engineering, 2013, 21(4):1062-1068.
|
[10] |
仝卫国, 庞雪纯, 朱赓宏. 基于卷积神经网络的气液两相流流型识别方法[J].系统仿真学报, 2021, 33(4):883-891.
|
[14] |
刘曙光, 董行, 娄厦, 等. 基于随机森林特征变量优化的湿地植物分类与密度反演[J]. 同济大学学报(自然科学版), 2021, 49(5):695-704.
|
[16] |
金康荣, 於东军. 基于加权朴素贝叶斯分类器和极端随机树的蛋白质接触图预测[J]. 南京航空航天大学学报, 2018, 50(5):619-628.
|
[20] |
Zhang Y, Xu T H, Chen C, et al. A hierarchical method based on improved deep forest and case-based reasoning for railway turnout fault diagnosis[J]. Engineering Failure Analysis, 2021, 127.
|
|
Xu W, Xia Z X, Xing H Y. Lightning warning method based on integrated empirical mode decomposition and extreme gradient lifting [J]. Journal of instrumentation, 2020, 41(8):235-243.
|
|
Zhang Y W, Feng B, Chen Y, et al. Fault diagnosis method of oil immersed transformer based on genetic algorithm optimization of xgboost [J]. Power automation equipment, 2021, 41(2):200-206.
|
|
|
|