|
|
Analysis and Evaluation on the Uncertainty of Doppler Frequency Measurement Based on LDV Velocity Measurement Algorithm |
ZHANG Yu-wen1,2,CUI Li-shui2,XIE Dai-liang1,YANG Zhao-xin3 |
1. College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
2. National Institute of Metrology, Beijing 100029, China
3. Facility Design and Instrumentation Institute of China Aerodynamics Research and Development Center, Mianyang, Sichuan 621000, China |
|
|
Abstract In order to clarify the applicability of the low-speed results of the laser Doppler velocimeter (LDV) calibrated by the spinning-disc facility, it is analyzed that the uncertainty of velocity depends on the uncertainty of both the interference fringe spacing in the measuring volume and Doppler frequency. As the Interference fringe spacing is independent of the fluid velocity the possible difference of uncertainty in between the high velocity and the low velocity is only related with the Doppler frequency algorithm at different velocity. The uncertainty of Doppler frequency caused by the algorithm at different velocity is analyzed with Monte Carlo method (MCM) for evaluation of measurement uncertainty. The result shows that the relative uncertainty of the Doppler frequency caused by the algorithm is less than 0.03% in the range of 0.1~340m/s.The obvious difference of uncertainty has not been found in the different points of velocity investigated. The budget resulting from Doppler frequency accuracy to the uncertainty of velocity measured is less than 0.013%. It is concluded that the calibration result at low velocity is also reasonable to be used at high velocity measurement.
|
Received: 26 November 2021
Published: 18 April 2023
|
|
|
|
|
[5] |
刘子君. 基于可调速转盘装置的激光多普勒流速仪校准方法研究[D]. 杭州:中国计量大学, 2018.
|
[7] |
陈芷. 虚拟仪器算法的测量不确定度评估方法研究 [D]. 上海:上海应用技术大学, 2016.
|
[1] |
沈懿. 激光多普勒流速测量的初步研究[D]. 长沙: 国防科技大学, 2019.
|
|
Zhang J J, Zhang L, Zhen S L, et al. Deep-sea in-situ Laser Doppler velocity measurement system[J]. Chinese Journal of Physics, 2021, 70(21):150-156.
|
[8] |
JJF 1059.2-2012 用蒙特卡洛法评定测量不确定度[S]. 2012.
|
[9] |
Rudd M J. A new theoretical model for the laser Dopplermeter[J]. Journal of Physics E: Scientific Instruments, 1969,2(1).
|
[12] |
丁康, 张晓飞. 频谱校正理论的发展[J]. 振动工程学报, 2000, 13(1):14-22.
|
[13] |
荆学东, 陈芷, 张智慧, 等. 基于FFT的舍入不确定度评估[J]. 计量学报, 2016, 37(1):105-108.
|
[15] |
李慎安. JJF 1059-1999《测量不确定度评定与表示》讨论之三十七数值修约导致的不确定度[J]. 工业计量, 2011, 21 (6): 34-35.
|
[16] |
荆学东, 陈芷, 丁虎. FFT算法截断不确定度评估[J]. 船舶工程, 2016, 38(7):67-69.
|
[6] |
JJF 1059.1-2012测量不确定度评定与表示[S]. 2012.
|
|
Jing X D, Chen Z, Zhang Z H, et al. The Round-off Uncertainty Evaluation of Fast Fourier Transform[J]. Acta Metrologica Sinica, 2016, 37(1): 105-108.
|
[2] |
应智慧, 高春峰, 王琦, 等. 高精度激光多普勒测速仪在陆用自主导航系统中的应用[J]. 中国激光, 2017, 44(12):153-160.
|
|
Ying Z H, Gao C F, Wang Q, et al. Application of High-Accuracy Laser Doppler Velocimeter in Self-Contained Land Navigation System [J]. Chinese Journal of Lasers, 2017, 44(12):153-160.
|
[3] |
孙静静, 张磊, 甄胜来, 等. 深海原位激光多普勒测速系统研究[J]. 物理学报, 2021, 70(21): 150-156.
|
[4] |
沈熊. 激光多普勒测速技术及应用[M]. 北京: 清华大学出版社, 2004.
|
[10] |
程佩青. 数字信号处理教程[M]. 北京:清华大学出版社, 2007.
|
[11] |
谢明, 张晓飞, 丁康. 频谱分析中用于相位和频率校正的相位差校正法 [J]. 振动工程学报, 1999, 12(4):18-23.
|
|
Xie M, Zhang X F, Ding K. A Phase Difference Correction Method for Phase and Frequency Correction in Spectral Analysis[J]. Journal of Vibration Engineering, 1999, 12 (4): 18-23.
|
|
Ding K, Zhang X F. Advance in Spectrum Correction Theory[J]. Journal of Vibration Engineering, 2000 13 (1):14-22.
|
|
Jing X D, Chen Z, Ding H. Truncation Uncertainty Evaluation of Fast Fourier Transform Algorithm[J]. Ship Engineering, 2016, 38(7):67-69.
|
[14] |
倪育才. 实用测量不确定度评定[M]. 北京: 中国计量出版社, 2009.
|
|
|
|