|
|
Principle andTechnical Progress of Flux-actuated Superconducting Switches |
WANG Shi-jian,GAO He,LI Jin-jin,WANG Xue-shen |
Center for Advanced Measurement Science, National Institute of Metrology, Beijing 102200, China |
|
|
Abstract Superconductivity transition edge sensor (TES) has been widely used in photon metrology, optical quantum communication, X-ray radiation, cosmic microwave detection and other detection fields. For the large-scale integration TES application, the time-domain multiplexing (TDM) superconducting quantum interference devices (SQUIDs) are used to realize the signal readout. Flux-actuated superconducting switches based on Josephson junctions are the key factors for multiplexing readout system. Superconducting switches improve the multiplexing factor of the TDM system, and increase the integration level of TES. The principle, characteristic parameters, the design principles, and the application status in the TDM system of flux-actuated superconducting switches are introduced. This will provide technical support for the research of superconducting switches.
|
Received: 06 May 2021
Published: 18 April 2023
|
|
|
|
|
[26] |
Irwin K. Advanced Time Division, Code Division, and Microwave SQUID Multiplexers for X-ray Microcalorimeter Arrays [R]. CA 94305, 2017.
|
[20] |
Irwin K D. SQUID multiplexers for transition-edge sensors [J]. Physica C, 2002, 368: 203-210.
|
[14] |
郭小玮, 迟宗涛, 曹文会, 等. 约瑟夫森结阵器件的研究进展 [J]. 计量学报, 2013, 34(4): 378-382.
|
[3] |
Dober B J, Becker D T, Bennett D A, et al. Microwave SQUID Multiplexer demonstration for Cosmic Microwave Background Imagers [J]. Applied Physics Letters, 2017, 111(243510): 1-5.
|
[5] |
Pappas C G, Fowler J W, Bennett D A, et al. A Highly Linear Calibration Metric for TES X-ray Microcalorimeters [J]. Journal of Low Temperature Physics, 2018, 193(3): 249-257.
|
[7] |
Doriese W B, Beall J A, Beyer J, et al. Time-division SQUID multiplexer for the readout of X-ray microcalorimeter arrays [J]. Nuclear Instruments Methods in Physics Research, 2004, 520(1-3): 559-561.
|
[9] |
Cantor R, Lee L P, Matlashov A, et al. A low-noise, two-stage DC SQUID amplifier with high bandwidth and dynamic range [J]. Applied Superconductivity IEEE Transactions on, 1997, 7(2): 3033-3036.
|
[13] |
Morgan K M, Alpert B K, Bennett D A, et al. Code-division-multiplexed readout of large arrays of TES microcalorimeters [J]. Applied Physics Letters, 2016, 109(112604): 1-5.
|
[1] |
刘贤文, 徐骁龙, 张硕, 等. TES用超导薄膜制备及特性研究 [J]. 计量学报, 2021, 42(2): 184-188.
|
|
Liu A W, Xu X L, Zhang S, et al. Deposition and Characterization of Thin Films for Superconducting Transition Edge Sensor [J]. Acta Metrologica Sinica, 2021, 42(2): 184-188.
|
[6] |
Ullom J N, Bennett D A. Review of superconducting transition-edge sensors for X-ray and gamma-ray spectroscopy [J]. Superconductor Science and Technology, 2015, 28(8): 084003.
|
[10] |
Chervenak J A, Irwin K D, Grossman E N, et al. Superconducting multiplexer for arrays of transition edge sensors [J]. Applied Physics Letters, 1999, 74(26): 4043-4045.
|
[15] |
Zappe H. Josephson quantum interference computer devices [J]. IEEE Transactions on Magnetics, 1977, MAG-13(1): 41-47.
|
[25] |
Niemack M D, Beyer J, Cho H M, et al. Code-division SQUID multiplexing [J]. Applied Physics Letters, 2010, 96(163509): 1-3.
|
[2] |
Lita A E, Miller A J, Nam S. Energy Collection Efficiency of Tungsten Transition-Edge Sensors in the Near-Infrared [J]. Journal of Low Temperature Physics, 2008, 151(1-2): 125-130.
|
[4] |
Heinz E, Zakosarenko V, May T, et al. Dynamic behavior of dc SQUIDs in time-division multiplexing readout schemes [J]. Superconductor Science and Technology, 2013, 26 (4): 45013-45016.
|
[8] |
Welty R P, Martinis J M. Two-stage integrated SQUID amplifier with series array output [J]. IEEE Transactions on Applied Superconductivity, 2002, 3(1): 2605-2608.
|
[12] |
Reintsema C D, Bennett D A, Denison E V, et al. High-Throughput, DC-Parametric Evaluation of Flux-Activated-Switch-Based TDM and CDM SQUID multiplexers [J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5): 1-1.
|
[17] |
Irwin K D, Cho H M, Doriese W B, et al. Advanced code-division multiplexers for superconducting detector arrays [J]. Journal of Low Temperature Physics, 2012, 167(5): 588-594.
|
[27] |
Dawson C S. Automated Measurements for the Characterization of SQUID-Based Time-Division Multiplexing Chips [R]. CA 94305, 2017.
|
[11] |
Voisin F, Martino, Lee L P, et al. Nondissipative Addressing for Time-Division SQUID Multiplexing [J]. IEEE Transactions on Applied Superconductivity, 2011, 21(6): 3652-3654.
|
|
Guo X W, Chi Z T, Cao W H, et al. The Research Progress of the Josephson Array Device [J]. Acta Metrologica Sinica, 2013, 34(4): 378-382.
|
[16] |
Beyer J, Drung D. A SQUID multiplexer with superconducting-to-normalconducting switches [J]. Superconductor Science and Technology, 2008, 21(105022): 1-5.
|
[18] |
Du J, Charles A D M, Petersson K D, et al. Influence of Nb film surface morphology on the sub-gap leakage characteristics of Nb/AlOx-Al/Nb Josephson junctions [J]. Superconductor Science and Technology, 2007, 20(11): S350-S355.
|
[19] |
Kuroda K, Yuda M. Niobium-stress influence on Nb/Al-oxide/Nb Josephson junctions [J]. Journal of Applied Physics, 1988, 63(7): 2352-2357.
|
[22] |
Doriese W B, Bandler S R, Chaudhuri S, et al. Optimization of Time- and Code-Division-Multiplexed Readout for Athena X-IFU [J]. IEEE Trans Appl Supercond, 2019, 29(5): 2500305.
|
[24] |
Irwin K D, Niemack M D, Beyer J, et al. Code-division multiplexing of superconducting transition-edge sensor arrays [J]. Superconductor Science and Technology, 2010, 23(034004): 1-7.
|
[28] |
Dawson C S, Chaudhuri S, Titus C J, et al. Two-Level Switches for Advanced Time-Division Multiplexing [J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5): 1-5.
|
[29] |
Beev N, Kiviranta M, van de Kuur J, et al. Cryogenic time-domain multiplexer based on SQUID arrays and superconducting/normal conducting switches [J]. Journal of Physics: Conference Series, 2014, 507(4): 1-4.
|
[30] |
Kiviranta M, Beev N. SQUID-Based Multiplexing by Slope Switching and Binary-to-Hadamard Address Translation [J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3).
|
[32] |
Yu H F, Cao W H, Zhu X B, et al. Fabrication of high-quality submicron Nb/Al-AlOx/Nb tunnel junctions [J]. Chinese Physics B, 2008, 17(8): 3083-3086.
|
[34] |
Kempf S, Ferring A, Fleischmann A, et al. Direct-current superconducting quantum interference devices for the readout of metallic magnetic calorimeters [J]. Superconductor Sciencee and Technology, 2015, 28(045008): 1-12.
|
[21] |
Stiehl G M, Doriese W B, FowlerJ W, et al. Code-division multiplexing for X-ray microcalorimeters [J]. Applied Physics Letters, 2012, 100(072601): 1-3.
|
[23] |
Doriese W B, Morgan K M, Bennett D A, et al. Developments in Time-Division Multiplexing of X-ray Transition-Edge Sensors [J]. Journal of Low Temperature Physics, 2016, 184: 389-395.
|
[31] |
Beyer J, Drung D, Peters M, et al. A Single-Stage SQUID Multiplexer for TES Array Readout [J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 505-508.
|
[33] |
Kaiser C, Meckbach J M, Ilin K S, et al. Aluminum Hard Mask Technique for the Fabrication of High-Quality Submicron Nb/Al-AlOx/Nb Josephson Junctions [J]. Superconductor Science and Technology, 2010, 24(3): 61-66.
|
|
|
|