|
|
Measurement of the Mass Attenuation Coefficient of Medical Radiation Module by HXCF |
GUO Kai-yue1,2,ZHAO Tian-qi1,GUO Si-ming2,JIANG Zheng2,4,QIE Xiao-yu2,3,YU Tao2,4,WU Jin-jie2 |
1. China Jiliang University,Hangzhou,Zhejiang 310018,China
2. National Institute of Metrology,Beijing 100029,China
3. Hebei University of Science and Technology,Shijiazhuang,Hebei 050018,China
4.Chengdu University of Technology,Chengdu,Sichuan 610059,China |
|
|
Abstract Mass attenuation coefficient is an important physical quantity in X-ray analysis,and it is the most commonly used radiation characterization parameter at present. The hard X-ray ground calibration device can provide “single energy and narrow beam” experimental conditions for the measurement of mass attenuation coefficient,and is an ideal device for the study of mass attenuation coefficient. The mass attenuation coefficients of two medical module materials,Poly tetra fluoroethylene(PTFE) and Polymethyl methacrylate(PMMA),were measured in the energy range of (40~80) keV with a hard X-ray ground calibration device. The measured mass attenuation coefficients were compared with the reference values in NIST database. The relative deviation between experimental value and theoretical value was analyzed. The results show that the variation trend of the mass attenuation coefficient curves of the two materials is consistent with the theoretical value. The maximum relative deviation between the measured values of PTFE and the theoretical values is 5.274%@47keV,and the maximum relative deviation between the measured values of PMMA and the theoretical values is 6.303%@51keV.
|
Received: 04 July 2022
Published: 18 April 2023
|
|
|
|
|
[3] |
蒋伟, 林大全, 樊庆文, 等. 成都剂量体模(CDP)组织等效材料辐射等效性评价[J]. 中国测试技术, 2006, 32(6): 69-71, 140.
|
|
Sui S S, Wei J. Calculation and application of mass attenuation coefficient[J]. Spectroscopy and Spectral Analysis, 1996, 16(2): 85-89.
|
[2] |
Singh V P, Medhat M E, Badiger N M. Photon attenuation coefficients of thermoluminescent dosimetric materials by Geant4 toolkit, XCOM program and experimental data: A comparison study[J]. Annals of Nuclear Energy, 2014, 68(6): 96-100.
|
[5] |
陈玉鹏, 张澍, 王国峰, 等. HXMT卫星X射线标定装置和标定实验[J]. 现代物理知识, 2016 (4): 31-37.
|
|
Chen Y P, Zhang S, Wang G F, et al. X-ray calibration device and calibration experiment of HXMT satellite[J]. Modern Physics, 2016 (4): 31-37.
|
[6] |
王二彦, 蒋政, 郭思明, 等. 30~160keV单能X射线装置的单色性实验研究[J]. 计量学报, 2021, 42(5): 645-649.
|
[7] |
黎亚平, 吴丽萍, 谢万, 等. X射线质量吸收系数测量中一些问题的研究[J]. 四川大学学报: 自然科学版, 2005, 42(2): 343-346.
|
[1] |
眭松山, 魏军. 质量衰减系数的计算与应用[J]. 光谱学与光谱分析, 1996, 16(2): 85-89.
|
|
Jiang W, Lin D Q, Fan Q W, et al. Evaluation of irradiation equivalence of tissue-equivalent materials in chengdu dosimetric phantom (CDP) [J]. China Measurement Technology, 2006, 32(6): 69-71, 140.
|
[4] |
贾德林. 关于组织等效人体模型的材料和制作[J]. 中国辐射卫生, 1996, 5(4): 205-206, 209.
|
[9] |
余涛, 郭思明, 周建斌, 等. 使用单能X射线辐射装置对CdTe探测效率的实验刻度[J]. 计量学报, 2022, 43(10): 1366-1370.
|
[13] |
喻拓夏, 奚清, 杨丹. 一种基于射线照相的X射线衰减系数获得方法[J]. 计量学报, 2020, 41(11): 1431-1435.
|
|
Jia D L. Material and Manufacture of tissue Equivalent human model [J]. Chinese Journal of Radiological Health, 1996, 5(4): 205-206, 209.
|
|
Wang E Y, Jiang Z, Guo S M, et al. Experimental Study on Monochromaticity of 30~160keV Single Energy X-ray Device[J]. Acta Metrologica Sinica, 2021, 42(5): 645-649.
|
[8] |
张礼华, 林惠玉, 吕驰云, 等. γ射线质量吸收系数测量条件的研究[J]. 扬州师院学报: 自然科学版, 1992, 12(1): 49-53.
|
|
Yu T,Guo S M,Zhou J B, et al. Experimental Calibration of CdTe Detection Efficiency Using Single-energy X-ray Radiation Device[J]. Acta Metrologica Sinica, 2022, 43(10): 1366-1370.
|
|
Du H Y, Li F, Wu J J,et al. The Measurement of Synchrotron Radiation Single-energy X-ray Mass-attenuation Coefficient of Air[J]. Acta Metrologica Sinica, 2019, 40(2): 333-336.
|
|
Li Y P, Wu L P, Xie W, et al. Study on some problems in X-ray mass absorption coefficient measurement[J]. Journal of Sichuan University(Natural Science Edition), 2005, 42(2): 343-346.
|
|
Zhang L H, Lin H Y, Lü C Y, et al. Study on measuring conditions of γ-ray mass absorption coefficient[J]. Journal of Yangzhou Teachers College(Natural Science), 1992, 12(1): 49-53.
|
[10] |
Jiang Z, Wang E, Song R, et al. Optimization of a double crystal monochromator[J]. Journal of the Korean Physical Society, 2021, 79(8): 697-705.
|
[11] |
Weidemüller M , Hemmerich A, Grlitz A, et al. Bragg Diffraction in an Atomic Lattice Bound by Light[J]. Physical Review Letters, 1996, 75(25): 4583-4586.
|
[12] |
Nagaraja N, Sridhar K N, Manjunatha H C, et al. Measurement of mass attenuation coefficient and its derivable in polymers[J]. Progress in Nuclear Energy, 2022, 144: 104044.
|
|
Yu T X, Xi Q, Yang D. Research on X-ray Attenuation Coefficient Measurement Method Based on Radiography[J]. Acta Metrologica Sinica, 2020, 41(11): 1431-1435.
|
[14] |
杜海燕, 李凡, 吴金杰, 等. 同步辐射单能X射线空气质量衰减系数的测量[J]. 计量学报, 2019, 40(2): 333-336.
|
[15] |
Ménesguen, Y, Gerlach M, Pollakowski B, et al. High accuracy experimental determination of copper and zinc mass attenuation coefficients in the 100eV to 30keV photon energy range[J]. Metrologia, 2016, 53(1): 7-17.
|
|
|
|