|
|
Establishment of Quantitative PCR Methods for the Detection of Genetically Modified Maize MZIR098 |
WEN Hong-tao1,YANG Yang1,DING Yi-jia1,GUAN Hai-tao1,YUAN Ran1,ZHANG Rui-ying1,LI Ling-yan3,LIANG Jin-Gang2,WANG Jing1 |
1. Quality & Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang 150086, China
2. Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs of the People’ Republic of China, Beijing 100176, China
3. Beijing Vocational College of Agriculture, Beijing 102442, China |
|
|
Abstract Primers and probes were designed based on the 5′flanking sequence information of transgenic insect resistant and herbicide tolerant maize MZIR098. Subsequently, a double quantitative assay for the transformant specificity of maize MZIR098 was established through qPCR and 3D-dPCR platforms. After testing, it was found that the repeatability (relative standard deviation) of the two detection methods, qPCR and 3D-dPCR, was less than 25%, which met the relevant standards of transgenic detection methods, and there was no significant difference between the detection limit and the quantification limit. The above results showed that the two methods can meet the basic needs of quantitative detection of transgenic plants, and can provide a new reference method for accurate and efficient detection of maize MZIR098 and its products in the future.
|
Received: 01 August 2022
Published: 08 March 2023
|
|
|
|
|
[16] |
原霖, 韩焘, 翟新验. 核酸标准物质研究现状[J]. 中国畜牧兽医, 2014, 41(11):89-92.
|
[20] |
牛春艳, 张永卓, 杨佳怡, 等. 基于数字PCR的质粒核酸标准物质合作定值研究[J]. 计量学报, 2021, 42(11):1522-1527.
|
[22] |
董莲华, 隋志伟, 王晶, 等.数字PCR方法准确测量质粒DNA拷贝浓度[J]. 计量学报, 2017, 38(2):247-251.
|
|
Geng N J. Research on Legal Issues Based on the Status Quo of the Industrialization of Genetically Modified Crops in China[J]. Molecular Plant Breeding:2022(17):5675-5679..
|
[2] |
耿宁洁.中国转基因作物产业化现状及法规问题[J]. 分子植物育种,2022(17):5675-5679.
|
|
ISAAA. Global Status of Commercialized Biotech/GM Crops in 2019[J]. China Biotechnology, 2021,41(1): 114-119.
|
[6] |
王颢潜, 陈锐, 李夏莹, 等. 转基因产品成分检测技术研究进展[J]. 生物技术通报, 2018, 34(3):31-38.
|
[11] |
杨杰, 李兰, 戴莉, 等. 转基因产品CaMV 35S启动子基因实时荧光PCR检测方法中引物探针序列特征及影响[J]. 安徽农业科学, 2019, 47(24):192-195.
|
[1] |
国际农业生物技术应用服务组织. 2019年全球生物技术/转基因作物商业化发展态势[J]. 中国生物工程杂志, 2021, 41(1):114-119.
|
[5] |
刘培磊, 赵永国, 李宁, 等. 转基因技术对粮食安全的影响及对策[J]. 中国农业科技导报, 2010(4):1-5.
|
[10] |
安娜, 柳方方, 董美, 等. 基于PCR技术的DNA分析测试关键要素[J]. 基因组学与应用生物学, 2019, 38(2):624-629.
|
[15] |
潘小艳, 陶志华.微流控芯片数字PCR技术及临床应用前景[J]. 中华检验医学杂志, 2015, 38(9):592-594.
|
|
.
|
[3] |
张娟娟.转基因作物产业化中的法律监管保护分析[J/OL].分子植物育种:1-11[2022-11-18]. http://kns.cnki.net/kcms/detail/46.1068.s.20220425.0840.002.html.
|
|
Zhang J J. Analysis of Legal Supervision and Protection in the Industrialization of Genetically Modified Crops[J/OL]. Molecular Plant Breeding:1-11[2022-11-18]. http://kns.cnki.net/kcms/detail/46.1068.s.20220425.0840.002.html.
|
[4] |
孙亚男, 张维耀, 王金星, 等. 转基因作物研究进展及我国转基因大豆的现状与未来[J]. 中国种业, 2022(5):21-25.
|
[7] |
温洪涛, 李夏莹, 杨洋, 等. 玉米转基因成分筛查策略[J]. 生物技术通报, 2020, 36(5):39-47.
|
[9] |
辛艳, 刘何, 常雪艳, 等. 农作物种子转基因成分实时荧光PCR盲检技术要点与应用[J]. 天津农林科技, 2018(1):35-38.
|
[12] |
杨华, 彭城, 肖英平, 等. 转基因大豆SHZD32-1转化体普通PCR和qRT-PCR检测方法的研究[J]. 农业生物技术学报, 2018, 26(3):492-501.
|
[14] |
郑兰, 杨立桃, 王灿华. 三种数字PCR平台对多靶标质粒标准物质的定值[J]. 农业生物技术报, 2017, 25(9):1500-1507.
|
|
Sun Y N, Zhang W Y, Wang J X, et al. Research progress of transgenic crops and current situation and future of transgenic soybean in China[J]. China Seed Industry, 2022(5):21-25.
|
|
Wen H T, Li X Y, Yang Y, et al. Strategy of Screening Genetically Modified Maize[J]. Biotechnology Bulletin, 2020, 36(5):39-47.
|
|
Xin Y, Liu H, Chang X Y, et al. Key Points and Application of Real-time PCR Blind detection of Transgenic Components in Crop Seeds[J]. Tianjin Agriculture and Forestry Technology, 2018(1):35-38.
|
|
Yang H, Peng C, Xiao Y P, et al. Study on Common PCR and qRT-PCR for the detection of transgenic Soybean SHZD32-1[J]. Journal of Agricultural Biotechnology, 2018, 26(3):492-501.
|
|
Zheng L, Yang L T, Wang C H. Validation Certified Value of Multi-targets Plasmid Reference Materials by Three Digital PCR Platforms[J].Journal of Agricultural Biotechnology, 2017, 25(9):1500-1507.
|
[17] |
Hindson B J, Ness K D, Masquelier D A, et al. High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number[J]. Analytical Chemistry, 2011, 83(22):8604-8610.
|
[18] |
李亮, 隋志伟, 王晶, 等. 基于数字PCR的单分子DNA定量技术研究进展[J]. 生物化学与生物物理进展, 2012, 39(10):1017-1023.
|
|
Niu C Y, Zhang Y Z, Yang J Y, et al. Resrach on the Collaborative Value Assignment of Plasmid Nucleic Acid Refernce Materials Based on Digital PCR[J]. Acta Metrologica Sinica, 2021, 42(11):1522-1527.
|
|
Liu P L, Zhao Y G, Li N, et al. Impacts of Transgenic Technology on Food Security and Relevant Countermeasures.[J]. Journal of Agricultural Science and Technology, 2010(4):1-5.
|
|
Wang H Q, Chen R, Li X Y, et al. Research Progress on the Testing Technologies for Composition in Genetically Modified Products[J]. Biotechnology Bulletin, 2018, 34(3):31-38.
|
[8] |
孟令聪, 周德龙, 高婷婷, 等. 基于TaqMan实时荧光PCR技术快速筛查转基因玉米[J]. 分子植物育种, 2021, 19(22):7495-7498.
|
|
Meng L C, Zhou D L, Gao T T, et al. Rapid screening of transgenic maize by TaqMan real-time PCR[J].Molecular Plant Breeding, 2021, 19(22):7495-7498.
|
|
An N, Liu F F, Dong M, et al. Key Elements of DNA Analysis and Testing Based on PCR Technology[J]. Genomics and Applied Biology, 2019, 38(2):624-629.
|
|
Yang J, Li L, Da L, et al. Characteristics and Effects of Primer Probe Sequences in Real-time Fluorescent PCR Detection Method for GMO Products CaMV 35S Promoter Gene[J]. Anhui Agricultural Sciences, 2019, 47(24):192-195.
|
[13] |
温洪涛, 杨洋, 丁一佳, 等. 转基因大豆MON87701品系qPCR和3D-dPCR检测方法的建立[J]. 大豆科学, 2020, 39(2):212-219.
|
|
Wen H T, Yang Y, Ding Y J, et al. Establishment of qPCR and 3D-PCR Detection Method of Genetically Modified Soybean MON87701[J]. Soybean Science, 2020, 39(2):212-219.
|
|
Pan X Y, Tao Z H. Digital PCR technology and clinical application prospect of microfluidic chip[J]. Chinese Journal of Laboratory Medicine, 2015, 38(9):592-594.
|
|
Yuan L, Han S, Zhai X Y. Research Status of Nucleic Acid Reference Materials[J]. China Animal Husbandry and Veterinary, 2014, 41(11):89-92.
|
|
Li L, Sui Z W, Wang J, et al. Progress of Digital PCR for Single DNA Quantification[J]. Progress in Biochemistry and Biophysics, 2012, 39(10):1017-1023.
|
[19] |
European Network of GMO Laboratorie.Definition of minimum performance requirements for analytical methods of GMO testing[R]. Italy: European Union Reference Laboratory for GM Food and Feed,2015.
|
[21] |
王迪, 王志栋, 吴枭, 等. SARS-CoV-2 基因组RNA标准物质的研制[J]. 计量学报, 2021, 42(2):259- 264.
|
|
Wang D, Wang Z D, Wu X, et al. Development of Reference Material of SARS-CoV-2 Genomic RNA[J]. Acta Metrologica Sinica, 2021, 42(2):259-264.
|
|
Dong L H, Sui Z W, Wang J, et al. Accurate Plasmid DNA Copy Concentration Quantification by Digital PCR[J]. Acta Metrologica Sinica, 2017, 38(2):247-251.
|
|
|
|