|
|
Measurement and Calculation of C Field of Cesium Fountain Clock |
LIU Hong-kang1,LIU Kun2,HAN Lei1,FANG Fang2,CHEN Wei-liang2,ZHENG Fa-song2,DAI Shao-yang2,ZUO Ya-ni2,LI Tian-chu1,2 |
1. School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
2. National Institute of Metrology, Beijing 100029, China |
|
|
Abstract In the cesium fountain clock experiment, the magnetic uniformity of C field determines the uncertainty evaluation of the second order Zeeman frequency shift. Microwave excitation method can be used to measure the average value of the time-weighted magnetic induction intensity at each height of the C field. In order to obtain the actual magnetic field distribution of C field, the measurement results of microwave excitation method need to be de-weighted. To introduces two de-time-weighted algorithms and verifies them with simulation data. Finally, the C field of NIM6 cesium fountain clock is measured and calculated by microwave excitation method and two de-time-weighted algorithms combined with Monte Carlo uncertainty evaluation method.
|
Received: 15 March 2022
Published: 21 February 2023
|
|
|
|
|
|
Han Y T. SI Base Units and Time Measurement[J]. Acta Metrologica Sinica, 2022, 43(1): 1-6.
|
[11] |
刘昆, 房芳, 陈伟亮, 等. 应用于铯喷泉钟的磁屏蔽系统的设计 [J]. 计量学报, 2014, 35(3): 281-285.
|
[18] |
倪育才. 实用测量不确定度评定 [M]. 北京: 中国质量标准出版传媒有限公司, 2020: 240-244.
|
[8] |
王义遒. 原子的激光冷却与陷俘 [M]. 北京: 北京大学出版社, 2007: 342-343.
|
[10] |
陈伟亮, 房芳, 袁小迪, 等. NIM6铯喷泉钟背景气体碰撞频移的评估 [J]. 计量技术, 2020, (5): 11-13.
|
[15] |
Fang F, Li M S, Lin P W, et al. NIM5 Cs fountain clock and its evaluation [J]. Metrologia, 2015, 52 (4): 454-468.
|
[17] |
江文松, 王中宇, 罗哉, 等. 基于蒙特卡罗法的冲击力溯源系统不确定度评定 [J]. 计量学报, 2020, 41(4): 448-454.
|
[1] |
Clairon A, Laurent P, Santarelli G, et al. A cesium fountain frequency standard: preliminary results [J]. IEEE Transactions on Instrumentation and Measurement, 1995, 44(2): 128 - 131.
|
[6] |
Wynands R, Weyers S. Atomic fountain clocks [J]. Metrologia, 2005, 42(3): 64-79.
|
[13] |
Jefferts S R, Shirley J, Parker T E, et al. Accuracy evaluation of NIST-F1 [J]. Metrologia, 2002, 39 (4): 321-336.
|
[2] |
Dai S Y, Zheng F S, Liu K, et al. Cold atom clocks and their applications in precision measurements [J]. Chinese Physics B, 2021, 30(1): 42-56.
|
[4] |
Heavner T P, Donley E A, Levi F, et al. First accuracy evaluation of NIST-F2 [J]. Metrologia, 2014, 51(3): 174-182.
|
[9] |
施俊如, 王心亮, 阮军, 等. 铯原子喷泉钟空间均匀C场的研究 [J]. 时间频率学报, 2018, 41 (3): 145-150.
|
|
Shi J R, Wang X L, Ruan J, et al. Study of C fields spatial uniformity for cesium fountain clock [J]. Journal of Time and Frequency, 2018, 41(3): 145-150.
|
|
Liu K, Fang F, Chen W L, et al. Design of magnetic shield for cesium fountain clock [J]. Acta Metrologica Sinica, 2014, 35(3): 281-285.
|
[16] |
刘昆, 宋文霞, 袁小迪, 等. 冷原子上抛高度的精确计算方法 [J]. 计量科学与技术, 2021, 65(10): 3-5.
|
|
Liu K, Song W X, Yuan X D, et al. Accurate Calculation of the Height of Cold Atoms Throw Up [J]. Metrology Science and Technology, 2021, 65(10): 3-5.
|
[19] |
韩雨桐. SI基本单位与时间计量[J]. 计量学报, 2022, 43(1): 1-6.
|
[3] |
王倩, 魏荣, 王育竹. 原子喷泉频标: 原理与发展 [J]. 物理学报, 2018, 67(16): 154-170.
|
|
Chen W L, Fang F, Yuan X D, et al. Evaluation of the Background Gas Collision Frequency Shift in NIM6 Cesium Fountain Clock [J]. Measurement Technique, 2020, (5): 11-13.
|
|
Jiang W S, Wang Z Y, Luo Z, et al. Uncertainty Evaluation on the Traceable Measurement System of the Impact Force Based on a Monte Carlo Method [J]. Acta Metrologica Sinica, 2020, 41(4): 448-454.
|
[5] |
Chu S, Hollber L, Bjorkholm J E, et al. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure [J]. Physical Review Letters, 1985, 55(1): 48-51.
|
[7] |
Szymaniec K, Park S E, Marra G, et al. First accuracy evaluation of the NPL-CsF2 primary frequency standard [J]. Metrologia, 2010, 47(4): 65-79.
|
[12] |
Park Y H, Eon P S, Lee S, et al. Inverse problem approach to evaluate quadratic Zeeman effect for an atomic fountain frequency standard KRISS-F1 [J]. Japanese Journal of Applied Physics, 2021, 60(6): 062001.
|
[14] |
Szymaniec K, Chalupczak W, Whibberley P B, et al. Evaluation of the primary frequency standard NPL-CsF1 [J]. Metrologia, 2005, 42 (1): 49-57.
|
|
Wang Q, Wei R, Wang Y Z. Atomic fountain frequency standard: principle and development [J]. Acta Physica Sinica, 2018, 67 (16): 154-170.
|
|
|
|