|
|
Sphericity Evaluation Method Based on Quick Search of Spherical Center |
SHENG Dong-liang1,HAO Juan2,SHENG Qing-yuan1,ZHAN Jian-liang1 |
1. School of Electromechanical Engineering & Transportation, Shaoxing Vocational & Technical College, Shaoxing, Zhejiang 312000, China
2. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China |
|
|
Abstract A sphericity evaluation method based on quick search of spherical center is proposed. Through the established mathematical model and search process, two concentric spheres and the center of the sphere are quickly searched and found. Firstly, use the least squares method to fit the center of the sphere to obtain the farthest point and the closest point from the sphere center to determine the direction of motion of the center of the sphere. Then search for the next center of the sphere in combination with the set step value. Finally, perform multiple iterations calculate until the sphericity meets the requirements. The experimental results show that the sphericity calculation error of the algorithm is less than 1μm, and the calculation efficiency is improved by 7 times, compared with the area search method. It can quickly realize accurate evaluation of sphericity error, meeting the needs of engineering applications.
|
Received: 12 October 2021
Published: 13 January 2023
|
|
|
|
|
[2] |
ISO/TS 12181-1: 2011. Geometrical product specification (GPS) -roundness -Part 1: Vocabulary and parameters of roundness [S].
|
[3] |
ISO/TS 12181-1: 2011. Geometrical product specification (GPS) -roundness -Part 2: Specification operators [S].
|
[1] |
朱训生, 王超. 各种球度测量方法的分析与展望 [J]. 机械制造, 2003, 41(9): 34-36.
|
[5] |
刘文文, 邓善熙, 聂恒敬. 球度误差包容评定的高精度实现方法 [J]. 计量学报, 2000, 21(2): 23-28.
|
[6] |
刘飞, 徐光华, 梁霖, 等. 最小区域球度误差评价的弦线截交方法 [J]. 机械工程学报, 2016, 52(5): 137-143.
|
[7] |
雷贤卿, 宋红卫, 薛玉君, 等. 球度误差的网格搜索算法 [J]. 农业机械学报, 2012, 43(5): 222-225.
|
|
Zhu X S, Wang C.Analysis and Expectation of Sphericity Measuring Methods[J]. Machinery, 2003, 41(9): 34-36.
|
|
Liu W W, Den S X, Nie H J. High Precision Algorithm for Evaluation of Sphericity Error [J]. Acta Metrologica Sinica, 2000, 21(2): 23-28.
|
[12] |
温秀兰, 宋爱国. 基于免疫进化计算的球度误差评定 [J]. 计量学报, 2005, 26(1): 12-15.
|
[13] |
喻晓, 黄美发, 夏澎. 基于改进粒子群算法的球度误差评定 [J]. 计算机系统应用, 2009, 18(12): 201-203.
|
[17] |
盛东良,詹剑良,朱丹. 一种基于快速搜索圆心的圆度新算法[J]. 计量学报, 2022, 43(6): 725-729.
|
[4] |
Kanada T. Evaluation of spherical form errors-computation of sphericity by means of minimum zone method and some examinations with using simulated data [J]. Precision Engineering, 1995, 17(4): 281-289.
|
|
Liu F, Xu G H, Liang L, et al. Intersecting Chords Method in Minimum Zone Evaluation of Sphericity Deviation [J]. Journal of Mechanical Engineering, 2016, 52(5): 137-143.
|
[8] |
Lei X Q, Gao Z B, Duan M D, et al. Method for sphericity error evaluation using geometry optimization searching algorithm [J]. Precision Engineering, 2015, 42: 101-112.
|
|
Lei X Q, Gao Z B, Ma W S, et al. Minimum Zone Evaluating for Sphericity Error Based on Geometry Search Apporaching Method [J]. Acta Metrologica Sinica, 2016, 37(2): 123-127.
|
[10] |
Cui C C, Che R S, Ye D, et al. Sphericity error evaluation using the genetic algorithm [J]. Optics and Precision Engineering, 2002, 10(4): 333-339.
|
|
Hu J, Cui C C, Huang F G. Sphericity error evaluation based on a modified particle swarm optimizer using dynamic inertia weight [J]. Journal of Graphics, 2012, 33(5): 99-103.
|
[16] |
黄强先, 岳龙龙, 郭小倩, 等. 基于最小包容区域的球度误差评定方法 [J]. 中国机械工程, 2020, 31(12): 1387-1393.
|
|
Lei X Q, Song H W, Xue Y J, et al. Sphericity Error Based on Mesh Search Algorithm [J]. Transactions of the Chinese Society for Agriculture Machinery, 2012, 43(5): 222-225.
|
[9] |
雷贤卿, 高作斌, 马文锁, 等. 基于几何搜索逼近的球度误差最小区域评定 [J]. 计量学报, 2016, 37(2): 123-127.
|
|
Wen X L, Song A G. Sphericaity Error Evaluation Based on the Immune Evolutionary Computation [J]. Acta Metrologica Sinica, 2005, 26(1): 12-15.
|
[14] |
胡捷, 崔长彩, 黄富贵. 基于动态改变权重粒子群算法的球度误差评定 [J]. 图学学报, 2012, 33(5): 99-103.
|
[15] |
罗钧, 吴华, 王强. 具有快速收敛特性蜂群算法的球度误差评定 [J]. 计量学报, 2011, 32(6). 501-504.
|
|
Shen D L, Zhan J L, Zhu D. A New Algorithm for Circularity Based on Fast Searching the Center[J]. Acta Metrologica Sinica, 2022, 43(6): 725-729.
|
[11] |
Wen X L, Song A G. An immune evolutionary algorithm for sphericity error evaluation [J]. International Journal of Machine Tools and Manufacture, 2004, 44(10): 1077-1084.
|
|
Huang Q X, Yue L L, Guo X Q, et al. A Method for Sphericity Error Evaluation Based on Minimum Coverage Area [J]. China Mechanical Engineering, 2020, 31(12): 1387-1393.
|
|
Yue X, Huang M F, Xia P. Sphericity Error Evaluation Based on an Improved Particle Swarm Optimization [J]. Computer Systems & Applications, 2009, 18(12): 201-203.
|
|
Luo J, Wu H, Wang Q. Sphericity Error Evaluation with Double-quick Artificial Bee Colony Algorithm [J]. Acta Metrologica Sinica, 2011, 32(6). 501-504.
|
|
|
|