|
|
Standard Facility of Natural Gas Energy Measurement Based on Verification Method of Sound Velocity |
WANG Hai-tong1,LI Chun-hui2,LI Meng-na2 |
1. College of Quality and Technical Supervision, Hebei University, Baoding, Hebei 071002, China
2. National Institute of Metrology, Beijing 100029, China |
|
|
Abstract For the energy flow measurement of natural gas, the measurement frequency of component data of natural gas is relatively low, which results in that the change of calorific value within the cycle cannot be found. The mathematical model of the sound velocity to verify energy is built based on the use the sound velocity to verify changes of the calorific value and compression factor caused by changing of components. Based on this theory, the standard facility of natural gas energy measurement is built, which has a measurement capability of 10MPa and 2000m3/h, and the measurement frequency of energy flow has been improved from the original minute level to the second level. The uncertainty of the standard facility is evaluated through the measurement of the natural gas energy flow rate on site, which is 0.33% (k=2) for the relative expanded uncertainty.
|
Received: 10 March 2021
Published: 19 September 2022
|
|
|
|
|
[1]刘凯. 天然气能量计量发展及其应用[J]. 中国石油和化工标准与质量, 2020, 40(10): 104-105.
Liu K. Development and Application of Natural Gas Energy Metering [J]. China Petroleum and Chemical Standard and Quality, 2020, 40(10): 104-105.
[2]常宏岗, 段继芹. 中国天然气计量技术及展望[J]. 天然气工业, 2020, 40(1): 110-118.
Chang H G, Duan J Q. Natural gas measurement technology system and its prospect in China[J]. Natural Gas Industry, 2020,40(1): 110-118.
[3]卫杰,李宁.天然气的计量方法与发展[J]. 煤炭与化工,2020,43(4): 143-147+150.
Wei J, Li N. Measurement methods and development of natural gas [J]. Coal and Chemical Industry, 2020, 43(4): 143-147+150.
[4]高军. 中国天然气计量标准体系现状简析[J]. 石油工业技术监督, 2020, 36(4): 12-15.
Gao J. Analysis on Current Situation of Chinas Natural Gas Measurement Standard System [J]. Technology Supervision in Petroleum Industry, 2020, 36(4): 12-15.
[5]颜士鑫, 王娓娜, 夏青扬. 天然气能量计量及体积发热量计算[J]. 能源与节能, 2013(10): 94-96.
Yan S X, Wang N N, Xia Q Y. Energy Measurement of Natural Gas and Calculation of Volume Calorific Value [J]. Energy and Energy Conservation, 2013(10): 94-96.
[6]李克, 潘春锋, 张宇, 等.天然气发热量直接测量及赋值技术[J]. 石油与天然气化工, 2013, 42(3): 297-301.
Li K, Pan C F, Zhang Y, et al. Direct measurement and assignment technology for natural gas calorific value [J]. Chemical Engineering of Oil and Gas,2013,42(3): 297-301.
[7]闫文灿, 王池, 裴全斌, 等.气相色谱法测量天然气热值的不确定度评定[J]. 计量学报, 2018, 39(2): 280-284.
Yan W C, Wang C, Pei Q B, et al. Uncertainty Evaluation on the Calorific Value of Natural Gas by GC [J]. Acta Metrologica Sinica, 2018,39(2): 280-284.
[8]陈勇, 李克, 王晓琴. 天然气发热量测定方式比较[J]. 工业计量, 2020, 30(5): 21-23,38.
Chen Y, Li K, Wang X Q. Comparison of methods for measuring calorific value of natural gas [J]. Industrial Measurement, 2020,30(5): 21-23,38.
[9]宋艾玲, 梁光川. 天然气流量计量现状与发展[J]. 石油工业技术监督, 2006, 22(3): 20-23.
Song A L, Liang G C. The Present Situation and Development of Natural Gas Flow Metering [J]. Technology Supervision In Petroleum Industry, 2006,22(3): 20-23.
[10]崔佳. 多声道超声波气体流量计的研究[D]. 成都: 电子科技大学, 2018.
[11]刘丹丹. 多声道超声波气体流量测量若干问题的研究[D]. 杭州: 浙江大学, 2017.
[12]Smith J P. AGA report NO.10, Speed of sound in natural gas and other related hydrocarbon gases [R]. American Gas Association,2003.
[13]GB/T 11062—2014 天然气发热量、密度、相对密度和沃泊指数的计算方法[S]. 2014.
[14]李丹华, 姜东琪. AGA8—92DC计算方法天然气压缩因子计算[J]. 煤气与热力, 2011, 31(3): 43-46.
Li D H, Jiang D Q. Calculation of Compression Factor of Natural Gas by AGA8—92DC Method [J]. GAS & HEAT, 2011,31(3): 43-46.
[15]GB/T 18604—2014 用气体超声流量计测量天然气流量[S]. 2014.
[16]陈赓良. 天然气能量计量的溯源性与不确定度评定[J]. 石油与天然气化工, 2017, 46(1): 83-90.
Chen G L. Traceability of energy determination for natural gas and estimation of measuring uncertainty Traceability of energy determination for natural gas and estimation of measuring uncertainty [J]. Chemical Engineering of Oil and Gas, 2017,46(1): 83-90.
[17]韩玲莉, 张福元. 天然气能量计量不确定度评定方法[J]. 中国计量学院学报, 2012, 2(2): 131-135.
Hang L L, Zhang F Y. Method for energy measuring uncertainty of natural gas [J]. Journal of China Jiliang University, 2012, 2(2): 131-135.
[18]赵金睿, 吴仲昆, 张大伟, 等. 储罐内液化天然气密度计算方法研究[J]. 计量学报, 2021, 42(1): 72-77.
Zhao J R, Wu Z K ,Zhang D W, et al. Research on Density Calculation Method in LNG Tank[J]. Acta Metrologica Sinica, 2021, 42(1): 72-77.
[19]杨延平, 刘博韬, 徐明. 天然气工作级标准装置的能力提升[J]. 计量学报, 2021, 42(3): 339-345.
Yang Y P, Liu B T, Xu M. Capacity Improvement of Natural Gas Flow Standard Device[J]. Acta Metrologica Sinica, 2021, 42(3): 339-345.
[20]GB/T 35186—2017 天然气计量系统性能评价[S]. 2017. |
|
|
|