|
|
Correction of Center of Gravity Measurement Error of Multi-point Weighing Method |
WANG Mei-bao1,ZHANG Xiao-lin2,CHEN Li1,YU Xiao1,ZHANG Qi-yuan1 |
1. Faculty of Mechanical Engineering & Automation, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
2. School of Instrument Science and Engineering, Harbin Institute of Technology, Haerbin, Heilongjiang 150001, China |
|
|
Abstract In order to improve the accuracy of center of gravity measurement by multi-point weighing method, a method of correcting coordinates of load cells by using the total least squares method was proposed. Firstly, the principle of measuring center of gravity by multi-point weighing method and the main factors which affect the center of gravity measurement result were analyzed. Secondly, the method by using a standard samples centroid as the conventional truth value of the center of gravity to correct the coordinates of load cells was proposed. Again, a standard sample was measured more than five times by making it lay on different places. In the above position, a laser tracker was used to measure centroid coordinates of the standard sample, and convert the results to the measurement coordinate system, then the coordinates of the load cells were calculated by the total least squares method. Finally, another standard sample was measured to verify the method proposed. The experimental results show that the center of gravity measurement error is within 0.1mm, which means that the proposed method to correct the coordinates of the load cells is effective.
|
Received: 16 November 2020
Published: 20 August 2022
|
|
|
|
|
[1]陈平, 邓高福, 吴海瀛. 飞行器模型质量特性参数一体化测量装置研究[J]. 机械科学与技术, 2015, 35(12): 1891-1895.
Chen P, Deng G F, Wu H Y. Research on Integrated Measuring Device of Mass Property Parameters for Aircraft Model[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 35(12): 1891-1895.
[2]陈慧, 高博麟, 徐帆. 车辆质心侧偏角估计综述[J]. 机械工程学报, 2013, 49(24): 76-94.
Chen H, Gao B L, Xu F. Review on Vehicle Sideslip Angle Estimation[J]. Journal of Mechanical Engineering, 2013, 49(24): 76-94.
[3]王国刚, 刘玉宝, 刘强, 等. 一种测量无人机重心和转动惯量的方法[J]. 航空兵器, 2013(5): 7-11.
Wang G G, Liu Y B, Liu Q, et al. A Method for Measuring Gravity Center and Inertia Moments of UAV[J]. Aero Weaponry, 2013(5): 7-11.
[4]陈永强, 周晓丽, 康军, 等. X-38飞行器质量特性测量方法[J]. 航天制造技术, 2018, 6(3): 62-65.
Chen Y Q, Zhou X L, Kang J, et al. Measurement Method for Mass Properties of X-38 Vehicle[J]. Aerospace Manufacturing Technology, 2018, 6(3): 62-65.
[5]Tang L, Shangguan W B. An improved pendulum method for the determination of the center of gravity and inertia tensor for irregular-shaped bodies[J]. Measurement, 2011,44: 1849-1859.
[6]余烨, 胡翔, 王启宇, 等. 绝对重力仪中落体光心与质心间距的精确测量[J]. 计量学报, 2020, 41(07): 830-834.
Yu Y, Hu X, Wang Q Y, et al. Precisely Measure the Distance between the Falling Bodys Mass Center and Its Optical Center for Absolute Gravimeters[J]. Acta Metrologica Sinica, 2020, 41(07): 830-834.
[7]Mondal N, Acharyya S, Saha R, et al. Optimum design of mounting components of a mass property measurement system[J]. Measurement, 2016, 78: 309-321.
[8]吴俊刚, 丁飞, 周建文, 等. 商用车驾驶室质心与转动惯量测量方法[J]. 计量学报, 2018, 39(05): 693-697.
Wu J G, Ding F, Zhou J W, et al. Correction Measuring Method of CG and Inertia Moment of Commercial Vehicle Cab[J]. Acta Metrologica Sinica, 2018, 39(05): 693-697.
[9]温晶晶, 邓聃, 吴斌. 无人机质量特性参数一体化测量系统的研究[J]. 计量学报, 2018, 39(02): 145-150.
Wen J J, Deng D, Wu B. Measurement Research on Mass Property Parameters of Unmanned Aerial Vehicle[J]. Acta Metrologica Sinica, 2018, 39(02): 145-150.
[10]王超, 唐文彦, 张晓琳, 等. 大尺寸非回转体质量特性一体化测量系统的设计[J]. 仪器仪表学报, 2012, 33(7): 1634-1640.
Wang C, Tang W Y, Zhang X l, et al. Design of mass property integration measurement system for large size non-rotating bodies[J]. Chinese Journal of Scientific Instrument, 2012. 33(7): 1634-1640.
[11]Gopinath K, Raghavendra K, Behera M K, et al. Gopinath. Product design aspects for design of accurate mass properties measurement system for aerospace vehicles[J]. Applied Mechanics and Materials, 2012,110-116: 4712-4718.
[12]钟江, 赵章风, 乔欣. 基于三点支撑的质心测量系统及误差分析[J]. 中国机械工程, 2010, 21(12): 1469-1476.
Zhong J, Zhao Z F, Qiao X. Centroid Measurement System and Error Analysis Based on Three-point Supported[J]. China Mechanical Engineering, 2010, 21(12): 1469-1476.
[13]王超, 张晓琳, 唐文彦, 等. 大尺寸箭弹质量特性测量过程中位姿标定方法研究[J]. 兵工学报, 2014, 35(1): 108-113.
Wang C, Zhang X L, Tang W Y, et al. Method for Improving Mass Property Measurement Accuracy of Large-size Projectiles[J]. Acta Armamentarii, 2014, 35(1): 108-113.
[14]周念, 张万欣, 司怀吉. 小质量不规则物体质心测量方法研究[J]. 载人航天, 2017, 23(3): 408-413.
Zhou N, Zhang W X, Si H J. Research on Centroid Measurement Method of Small Mass and Irregular Structure Objects[J]. Manned Spaceflight, 2017, 23(3): 408-413.
[15]于荣荣, 於陈程, 王晓阳, 等. 一种高精度冗余质量质心测试方法研究[J]. 航空制造技术, 2018, 61(3): 84-89.
Yu R R, Yu C C, Wang X Y, et al. Research on High Precision Redundant Mass and Gravity Center Measure Method[J]. Aeronautical Manufacturing Technology, 2018, 61(3): 84-89.
[16]郭志成, 丁军晖. 战术导弹质心定位方法研究[J]. 战术导弹技术, 2010 (2): 22-24.
Guo Z C, Ding J H. Research on Centroid Orientation Method for Tactical Missile[J]. Tactical Missile Technology, 2010(2): 22-24.
[17]周婧, 高印寒, 刘长英, 等. 基于自适应算法的单目视觉系统的姿态解算[J]. 光学精密工程, 2012, 20(12): 2796-2803.
Zhou J, Gao Y H, Liu C Y, et al. Attitude calculation of single camera visual system based on adaptive algorithm[J]. Optics and Precision Engineering, 2012, 20(12): 2796-2803.
[18]陶叶青. 总体最小二乘模型及其在矿区测量数据处理中的应用研究[D]. 徐州: 中国矿业大学, 2015. |
|
|
|