|
|
Research on Fiber-optical Welding Current Measurement Technology |
ZHAO Ye-ming1,WANG Xiao-fei1,LI Chuan-sheng2,SHAO Hai-ming2,LI Qi3 |
1. Beijing Information Science and Technology University, Beijing 100192, China
2. National Institute of Metrology, Beijing 100029, China
3. Tianjin University, Tianjin 300072, China |
|
|
Abstract In response to the demand for accurate measurement of welding current of DC inverter resistance welding machines, a welding current measurement method based on fiber-optic current sensing technology is proposed.A dynamic model of the closed-loop detection system of a fiber-optic current sensor is established.By optimizing the forward gain of the system, the response speed and bandwidth of the sensor are both improved.The simulation and experimental results show that the rise time of the sensor is about 4.1 μs, and the amplitude-frequency characteristic attenuation is less than 0.3% over the range of DC to 30kHz.Based on the dynamic model, the sensors response to the welding current ripple component is calculated.The simulation results show that the dynamic tracking ability of the system can satisfy the measurement requirements of the ripple current.The fiber-optic current sensor is calibrated by the equal ampere-turn method, and the measurement error of the sensor is better than ±0.05% over the range of DC 5kA to 50kA.The field experiment results prove the feasibility of the fiber-optic current sensor using for DC inverter welding current measurement and field calibration of welding current tester.
|
Received: 26 November 2020
Published: 20 August 2022
|
|
|
|
|
[1]袁少波, 童彦刚. 点焊技术在汽车工业中的应用 [J]. 电焊机, 2005,35 (2): 26-30.
Yuan S B, Tong Y G. Application of spot welding in automobile industry[J]. Electric Welding Machine, 2005,35 (2): 26-30.
[2]戴虹, 吕其兵, 骆德阳, 等. 高速轨道焊接技术与装备的发展 (一)[J]. 电焊机, 2003, 33 (6): 4-6.
Dai H, Lv Q B, Luo D Y, et al. Welding technology and equipment development of high-speed rail (1)[J]. Electric Welding Machine, 2003, 33 (6): 4-6.
[3]赵雪山, 张勇, 王亭, 等. 轨道车辆碳钢点焊质量预测模型及分析 [J]. 电焊机, 2019, 49 (10): 28-33.
Zhao X S, Zhang Y, Wang T, et al. Establishing of spot welding quality prediction model of carbon steel for rail vehicles[J]. Electric Welding Machine, 2019, 49 (10): 28-33.
[4]阴丽华, 罗道宝. 焊接电流对汽车用双相钢板电阻点焊接头组织和性能的影响 [J]. 热加工工艺, 2014, 43 (5): 211-212.
Yin L H, Luo D B. Effects of Welding Current on Microstructure and Properties of Duplex Stainless Steel Resistance Spot Welded Joint[J]. Hot Working Technology, 2014, 43 (5): 211-212.
[5]王东, 冯晓云. 中频逆变直流电阻焊优势探讨[J]. 电焊机, 2006,36 (1): 41-43.
Wang D, Feng X Y. Discussion on advantages of MF inverter DC resistance welding[J]. Electric Welding Machine, 2006,36(1): 41-43.
[6]张银龙, 张琨, 王雪华, 等. 中频逆变直流焊轨技术研究[J]. 中国机械工程, 2019, 30 (3): 330-333.
Zhang Y L, Zhang K, Wang X H, et al. Research On MF Inverter Rail Welding Technology[J]. China Mechanical Engineering, 2019, 30 (3): 330-333.
[7]马跃洲, 金丽华, 陈剑虹. Rogowski电流传感器及其在电阻焊数据采集中的应用[J]. 兰州理工大学学报, 2004, 30 (2): 1-4.
Ma Y Z, Jin L H, Chen J H. Rogowski current transducer applied in data collection of for resistance spot welding[J]. Journal of Lanzhou University of Technology, 2004, 30(2): 1-4.
[8]张文清, 翁绍捷, 赵连杰, 等. 基于ZigBee的悬挂式点焊机焊接参数监测系统设计[J]. 热加工工艺, 2016, 45 (5): 200-203.
Zhang W Q, Weng S J, Zhao L J, et al. Design of Welding Parameters Monitoring System for Hanging Spot Welder Based on ZigBee[J]. Hot Working Technology, 2016, 45 (5): 200-203.
[9]Wang R L, Xu S Y, Li W, et al. Optical fiber current sensor research: review and outlook[J]. Optical & Quantum Electronics, 2016, 48(9): 442.1-442.22.
[10]李奇,李传生, 梁波,等. 光纤直流大电流传感器非线性机理及校准技术 [J]. 计量学报,2021,42(4): 409-414.
Li Q, Li C S, Liang B, et al. Nonlinear Mechanism and Calibration Technology of Fiber-Optic DC High Current Sensor [J]. Acta Metrologica Sinica, 2021,42(4): 409-414..
[11]Blake J, Tantaswadi P, Carvalho R T D. In-line sagnac interferometer current sensor [J]. IEEE Transactions on Power Delivery, 1996, 11 (1): 116-120.
[12]谢小军, 朱才溢, 李庆先, 等. 反射式Sagnac型光纤宽带大电流测量仪的研制与性能评估[J]. 计量学报, 2020, 41(8): 95-102.
Xie X J, Zhu C Y, Li Q X, et al. Development and Performance Evaluation of Reflective Sagnac Optical Fiber Broadband High Current Measuring Instrument[J]. Acta Metrologica Sinica, 2020, 41(8): 95-102.
[13]张朝阳, 张春熹, 王夏霄, 等. 数字闭环全光纤电流互感器信号处理方法[J]. 中国电机工程学报, 2009, 30 (7): 44-48.
Zhang C Y, Zhang C X, Wang X X, et al. Signal processing method of digital closed-loop all-fiber current transformer [J]. Transactions of China Electrical Engineering, 2009, 30 (7): 44-48.
[14]李传生, 张春熹, 王夏霄, 等. 反射式Sagnac型光纤电流互感器的关键技术[J]. 电力系统自动化, 2013, 37 (12): 104-108.
Li C S, Zhang C X, Wang X X, et al. Key techniques of reflective Sagnac interferometer-type fiber optic current transformers[J]. Automation of Electric Power Systems, 2013, 37 (12): 104-108.
[15]王巍, 吴维宁, 王学锋. 调制器调制系数对光纤电流互感器测量精度的影响 [J]. 电力系统自动化, 2012, 36 (24): 64-68.
Wang W, Wu W N, Wang X F. Influence of Modulator Modulation Coefficient on Measurement Accuracy of Fiber Optic Current Transformer[J]. Automation of Electric Power Systems, 2012, 36 (24): 64-68.
[16]李奇, 李传生, 赵叶铭, 等. 闭环光纤电流传感器高阶动态模型及仿真[J]. 计量学报, 2021,42(6): 785-792.
Li Q, Li C S, Zhao Y M, et al. High-order dynamic model and simulation of closed-loop fiber-optic current sensor[J]. Acta Metrologica Sinica, 2021,42(6): 785-792.
[17]梅国健,王家福,李传生,等. 基于数字图像识别和光纤传感器的直流大电流在线校准装置[J]. 计量学报, 2021, 42(5): 623-628.
Mei G J, Wang J F, Li C S, et al. DC High Current On-Line Calibration Devicebased on Digital Image Recognition and Optical Fiber Sensor[J]. Acta Metrologica Sinica, 2021, 42(5): 623-628. |
|
|
|