|
|
Research of a Novel Piezoelectric Drive MotorUsing the Clamping Mechanism |
YUE Zhi-han,PAN Qiao-sheng,TAO Sheng-zhi,SHANG Jing-yi,LI Xiao-jie |
Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-electronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, China |
|
|
Abstract A novel clamped piezoelectric motor is proposed to solve the complex structure design problem of the clamped part of the square wave vibration when the traditional clamped piezoelectric motor works in the resonant state. Both the clamping part and the driving part of the motor are driven by a sinusoidal voltage of the same frequency to realize sinusoidal vibration. And the unidirectional output motion of the rotor is realized through the clamping contact between the stator and the rotor. Compared with the traditional clamping piezoelectric motor and the ultrasonic motor, the stator structure design does not need to adopt mode degeneration, which reduces the difficulty of the structure design. The structural parameters of stator and rotor are determined by finite element simulation, and the prototype is manufactured and the experimental platform is built. The clamping part is stimulated by sine wave and square wave respectively, and the waveform comparison of the driving part shows that the sine wave can also achieve the expected effect.The experimental results show that under quasi-static state, when the excitation voltage frequency is 250Hz and the voltage peak value Vp-p is 10V, the step distance is 0.5μm, the stepping speed is 0.13mm/s; under resonant state, when the excitation voltage frequency is 540Hz and the voltage peak value Vp-p is 70 V, the step distance is 32μm,the stepping speed is 16.9mm/s; the motor can achieve cross scale operation by taking into account low-frequency high-resolution and high-frequency high-speed output.
|
Received: 29 March 2022
Published: 20 August 2022
|
|
|
|
|
[1]李向华, 陈超, 赵淳生. 非接触式直线型超声电机的振动分析 [J]. 振动与冲击, 2010, 29 (7): 149-152.
Li X H, Chen C, Zhao C S. Vibration analysis of non-contact linear ultrasonic motor [J]. Journal of Vibration and Shock, 2010, 29 (7): 149-152.
[2]张健滔, 朱华, 赵淳生. 行波型杆式超声电机定子的参数化有限元法优化设计 [J]. 振动与冲击, 2009, 28 (7):122-125.
Zhang J T, Zhu H, Zhao C S. FEM-based parametric optimum design of a traveling-wave type bar-like ultrasonic motor stator [J]. Journal of Vibration and Shock, 2009, 28 (7):122-125.
[3]Sapsathiarm Y, Singh Y, Rajapakse R K N D.
Numerical modelling of piezoelectric actuators exposed to hydrogen [J]. Acta Mechanica, 2014, 225(10):2943-2957.
[4]Li S, Xin X, Shi G . Piezoelectric Actuator Design and Application on Active Vibration Control [J]. Physics Procedia, 2012, 25: 1388-1396.
[5]罗四维,乐燕芬,彭洋,等. 高线性度的二维无耦合纳米压电位移系统设计[J]. 计量学报, 2021, 42(8): 977-985.
Luo S W, Le Y F, Peng Y, et al. Design of a High Linearity Two-Dimensional Uncoupled Nanometer Piezoelectric Displacement System[J]. Acta Metrologica Sinica, 2021, 42(8): 977-985
.
[6]赵贤云, 高思田, 李琪, 等. 二维纳米位移台测量系统的搭建和实验研究[J]. 计量学报, 2015, 36(6): 565-569.
Zhao X Y, Gao S T, Li Q, et al. The Build of Two-dimensional Nano-displacement Measure System and Experiment Research [J]. Acta Metrologica Sinica, 2015, 36(6): 565-569.
[7]王金鹏, 金家楣, 赵淳生. 用于精密定位平台的直线超声电机的异步并联 [J]. 光学精密工程, 2011, 19 (11) : 2693-2702.
Wang J P, Jin J M, Zhao C S. Asynchronous bundling of linear ultrasonic motor for precision positioning stage [J]. Optics and Precision Engineering, 2011, 19 (11) : 2693-2702.
[8]Park S H, Agraz J,Tuncdenirs,et al. Delta-shaped piezoelectric ultrasonic motor for two-dimensional positioning [J]. Japanese Journal of Applied Physics, 2008,47 (1): 313- 318.
[9]贺良国. 基于同步箝位控制与周期机械波合成的压电马达研究[D]. 合肥:中国科学技术大学, 2013.
[10]吕其宝. 直线超声电机微观摩擦磨损分析和实验研究[D]. 南京:南京航空航天大学, 2017.
[11]张志豪, 孙庆龙, 惠相君, 等. 压电尺蠖直线电机的结构设计及特性分析与测试 [J]. 机械科学与技术, 2019, 38 (12): 1937-1943.
Zhang Z H, Sun Q L, Hui X J, et al. Structural Design, Characteristic Analysis and Testing of Piezoelectric Inchworm Liner Motor [J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38 (12): 1937-1943.
[12]李宜卿. 大行程纳米级直线压电伸缩器设计与实验研究[D]. 哈尔滨:哈尔滨工业大学, 2021.
[13]汪越. 仿生压电式尺蠖驱动器的设计分析与实验探究[D]. 济南:山东大学, 2020.
[14]华顺明, 曹旭, 王义强, 等. 尺蠖型压电驱动器结构及其特性 [J]. 压电与声光, 2019, 41 (5): 694-699+705.
Hua S M, Cao X, Wang Y Q, et al. Structure and Characteristics of Piezoelectric Inchworm Actuator [J]. Piezoelectrics and Acoustooptics, 2019, 41 (5): 694-699+705.
[15]王凯伦. 利用偏心转子的高速压电马达建模、仿真与实验研究[D]. 合肥:合肥工业大学, 2020.
[16]贺良国, 刘永斌, 张祺, 等. 新型同步箝位控制压电马达 [J]. 振动与冲击, 2013, 32 (23): 26-31.
He L G, Liu Y B, Zhang Q, et al. A novel piezoelectric motor with synchronous anchoring/loosening control [J]. Journal of Vibration and Shock, 2013, 32 (23): 26-31.
[17]Pan Q S, Zhang Q, Wang H B, et al. Piezoelectric linear motor using resonant-type clamping based on harmonic vibration synthesis [J]. Mechatronics, 2014, 24 (8): 1112-1119.
[18]庞席德, 贺良国, 楚宇恒, 等. 降低合成方波压电马达振子精度要求的研究 [J]. 微电机, 2018, 51 (5): 6-11.
Pang X D, He L G, Chu Y H, et al. Study on Reducing the Accuracy Requirement of Vibrator of Synthesis-square-wave-type Piezoelectric Motor [J]. Micromotors, 2018, 51 (5): 6-11. |
|
|
|