|
|
The Development and Future of Temperature Measurement for Biosome and Cells in Micro-nano Meter Scale |
WANG Zheng1,2,OUYANG Ke-chen2,3,XING Li2,FENG Xiao-juan2,ZHANG Jin-tao2 |
1. Department of Precision Instrument, Tsinghua University, Beijing 100084, China
2. Division of Thermophysics Metrology, National Institute of Metrology, Beijing 100029, China
3. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China |
|
|
Abstract Temperature is the fundamental parameter to describe the thermodynamic state and evolution of condensed matter. Temperature sensing in micro-nano meter scale has important applications in the fields of organisms and cells, chips, low-dimensional artificial materials and so on. It can provide another point of view to understand the activity of biosome, the chemical reaction and evolution with quantitative technique. Considering the obvious metrological differences between various temperature sensors, the comparison of metrological characteristics of different thermometers including micro-nano thermocouples, thermistors, infrared thermal imagers, magnetic nanoparticles and fluorescent materials were focused on. The future of temperature sensors for biosome and cells in micro-nano meter scale was also analyzed.
|
Received: 03 November 2021
Published: 30 June 2022
|
|
|
|
|
[1]Fischer J, Ullrich J. The new system of units[J]. Nature Physics, 2016, 12(1): 4-7.
[2]Hildebrandt B, Wust P, Ahlers O, et al. The cellular and molecular basis of hyperthermia[J].Crit Rev Oncol Hematol, 2002, 43: 33-56.
[3]张荧荧, 何晓光, 丛林海, 等. mAb-EGFR功能化修饰的纳米金棒靶向光热作用对下咽癌FADU细胞株和293T细胞株的温度影响[J]. 听力学及言语疾病杂志, 2015, 23(2): 170-175.
Zhang Y Y, He X G, Cong L H, et al. The effect of targeted photothermal effect of mAb-EGFR functionally modified gold nanorods on the temperature of hypopharyngeal carcinoma FADU cell line and 293T cell line [J]. Journal of Audiology and Speech Pathology, 2015, 23(2): 170-175.
[4]Brites C D S, Lima P P, Silva N J O, et al. Thermometry at the nanoscale[J]. Nanoscale, 2012, 4(16):4799-4829.
[5]Watanabe M, Kakuta N, Mabuchi K, et al. Micro-thermocouple probe for measurement of cellular thermal responses[C]//2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. Shanghai, China, 2005.
[6]Haeberle W, Pantea M, Hoerber J K H. Nanometer-scale heat-conductivity measurements on biological samples[J]. Ultramicroscopy, 2006, 106(8-9): 678-686.
[7]Shrestha R, Choi T Y, Chang W S, et al. Micropipette-based thermal sensor for biological applications[C]//SENSORS, 2010 IEEE. Waikoloa, HI, USA,2010.
[8]Sadat S, Tan A, Chua Y J, et al. Nanoscale thermometry using point contact thermocouples[J]. Nano Letters, 2010, 10(7): 2613-2617.
[9]Wang C, Xu R, Tian W, et al. Determining intracellular temperature at single-cell level by a novel thermocouple method[J].Cell Research,2011,21(10):1517-1519.
[10]Binslem S A, Ahmad M R. Thermistor based nano-needle for single cell thermal characterization[C]//IEEE International Conference on Control System. 2014.
[11]Kido R, Taguchi K. Cellular Temperature Measurement by Dielectrophoretic Impedance Measurement Method[J]. Journal of the Japan Society of Applied Electromagnetics and Mechanics, 2015, 23(3): 601-605.
[12]Li C, Sun J, Wang Q, et al. Wireless thermometry for real-time temperature recording on thousand-cell level[J]. IEEE Transactions on Biomedical Engineering, 2018, 66(1): 23-29.
[13]Seo S, Kim J, Kim J, et al. Development of high-sensitivity chip calorimeters for cellular metabolic heat sensing[J]. arXiv:1902.04503.
[14]Gamagami P, Silverstein M J, Waisman J R. Infra-red imaging in breast cancer[C]//Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Chicago, IL, USA,1997.
[15]Paulik M A, Buckholz R G, Lancaster M E, et al. Development of infrared imaging to measure thermogenesis in cell culture: thermogenic effects of uncoupling protein-2, troglitazone, and β-adrenoceptor agonists[J]. Pharmaceutical Research, 1998, 15(6): 944-949.
[16]Flores-Sahagun J H, Vargas J V C, Mulinari-Brenner F A. Analysis and diagnosis of basal cell carcinoma (BCC) via infrared imaging[J]. Infrared Physics & Technology, 2011, 54(5): 367-378.
[17]Qi H, Kuruganti P T,Snyder W E. Detecting breast cancer from thermal infrared images by asymmetry analysis[J].Medicine and Medical Research,2012:38.
[18]Kodama R H. Magnetic nanoparticles[J]. Journal of Magnetism and Magnetic Materials, 1999, 200(1-3): 359-372.
[19]Weaver J B, Rauwerdink A M, Hansen E W. Magnetic nanoparticle temperature estimation[J]. Medical Physics, 2009, 36(5): 1822-1829.
[20]Zhong J, Liu W, Du Z, et al. A noninvasive, remote and precise method for temperature and concentration estimation using magnetic nanoparticles[J]. Nanotechnology, 2012, 23(7): 075703.
[21]Zhong J, Liu W, Jiang L, et al. Real-time magnetic nanothermometry: The use of magnetization of magnetic nanoparticles assessed under low frequency triangle-wave magnetic fields[J]. Review of Scientific Instruments, 2014, 85(9): 094905.
[22]Zhong J, Schilling M, Ludwig F. Magnetic nanoparticle temperature imaging with a scanning magnetic particle spectrometer[J]. Measurement Science and Technology, 2018, 29(11): 115903.
[23]Zhou M,Zhong J, Liu W, et al. Study of Magnetic Nanoparticle Spectrum for Magnetic Nanothermometry[J]. IEEE Transactions on Magnetics, 2015,51(9):1-6.
[24]Ross D, Gaitan M, Locascio L E. Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye[J]. Analytical Chemistry, 2001, 73(17): 4117-4123.
[25]Suzuki M, Tseeb V, Oyama K, et al. Microscopic detection of thermogenesis in a single HeLa cell[J]. Biophysical Journal, 2007, 92(6): L46-L48.
[26]Jigami T, Kobayashi M, Taguchi Y, et al. Development of Nanoscale Temperature Measurement Technique Using Near-field Fluorescence[J]. International Journal of Thermophysics, 2007, 28(3): 968-979.
[27]Arai S, Suzuki M, Park S J, et al. Mitochondria-targeted fluorescent thermometer monitors intracellular temperature gradient[J]. Chemical Communications, 2015, 51(38): 8044-8047.
[28]鲁维, 吴可, 丛建波, 等. 用罗丹明B实现微波辐照下细胞水平温度的实时测量[J]. 生物物理学报, 2015, 31(2): 116-124.
Lu W, Wu K, Cong J B, et al. Using Rhodamine B for Real-Time Temperature Measurement at Cellular Level during Microwave Exposure[J]. Acta Biophysica Sinica, 2015, 31(2): 116-124.
[29]Homma M, Takei Y, Murata A, et al. A ratiometric fluorescent molecular probe for visualization of mitochondrial temperature in living cells[J]. Chemical Communications, 2015, 51(28): 6194-6197.
[30]Baker G A, Baker S N, McCleskey T M. Noncontact two-color luminescence thermometry based on intramolecular luminophore cyclization within an ionic liquid[J]. Chemical Communications, 2003 (23): 2932-2933.
[31]Gota C, Okabe K, Funatsu T, et al. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry[J]. Journal of the American Chemical Society, 2009, 131(8): 2766-2767.
[32]Okabe K,Inada N,Gota C,et al. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy[J].Nature Communications,2012,3(1):1-9.
[33]Neupert J, Bock R. Designing and using synthetic RNA thermometers for temperature-controlled gene expression in bacteria[J]. Nature Protocols, 2009, 4(9): 1262.
[34]Chowdhury S,Maris C,Allain F H T,et al. Molecular basis for temperature sensing by an RNA thermometer[J].The EMBO Journal,2006,25(11):2487-2497.
[35]Loh E, Righetti F, Eichner H, et al. RNA thermometers in bacterial pathogens[J].
Microbiology Spectrum, 2018, 6(2): 55-73.
[36]Ke G L, Wang C, Ge Y, et al. L-DNA molecular beacon: a safe, stable, and accurate intracellular nano-thermometer for temperature sensing in living cells[J]. Journal of the American Chemical Society, 2012, 134(46): 18908-18911.
[37]Shimomura O, Johnson F, Saiga Y. Excitation, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea[J]. Journal of Cellular & Comparative Physiology, 1962, 59: 223-227.
[38]Shimomura O. The Nobel Prize in Chemistry 2008[EB/OL]. https://www.nobelprize.org/prizes/chemistry/2008/summary/
[39]Leiderman P, Huppert D, Agmon N. Transition in the temperature-dependence of GFP fluorescence: from proton wires to proton exit[J]. Biophysical Journal, 2006, 90(3): 1009-1018.
[40]Donner J S, Thompson S A, Kreuzer M P, et al. Mapping intracellular temperature using green fluorescent protein[J]. Nano Letters, 2012, 12(4): 2107-2111.
[41]Savchuk O A, Silvestre O F, Ado R M R, et al. GFP fluorescence peak fraction analysis based nanothermometer for the assessment of exothermal mitochondria activity in live cells[J]. Scientific Reports, 2019, 9(1): 1-11.
[42]Aigouy L, Samson B, Julié G, et al. Scanning near-field optical microscope working with a CdSe/ZnS quantum dot based optical detector[J]. Review of Scientific Instruments, 2006, 77(6): 063702.
[43]Maestro L M, Rodríguez E M, Rodríguez F S, et al. CdSe Quantum Dots for Two-Photon Fluorescence Thermal Imaging[J]. Nano Letters, 2010, 10(12): 5109-5115.
[44]Yang J M,Yang H,Lin L.Quantum dot nano thermometers reveal heterogeneous local thermogenesis in living cells[J].ACS Nano,2011,5(6):5067-5071.
[45]Huang X, Neretina S, El-Sayed M A. Gold nanorods: from synthesis and properties to biological and biomedical applications[J]. Advanced Materials, 2009, 21(48): 4880-4910.
[46]Zhang Y N, Yu J, Birch D J S, et al. Gold nanorods for fluorescence lifetime imaging in biology[J]. Journal of Biomedical Optics, 2010, 15(2): 020504.
[47]Li S, Stockmar F, Azadfar N, et al. Intracellular Thermometry by Using Fluorescent Gold Nanoclusters[J]. Angewandte Chemie International Edition, 2013, 52(42): 11154-11157.
[48]Kusama H, Sovers O J, Yoshioka T. Line shift method for phosphor temperature measurements[J]. Japanese Journal of Applied Physics, 1976, 15(12): 2349.
[49]Maestro L M, Rodriguez E M, Vetrone F, et al. Nanoparticles for highly efficient multiphoton fluorescence bioimaging[J]. Optics Express, 2010, 18(23): 23544-23553.
[50]Vetrone F, Naccache R, Zamarrón A, et al. Temperature sensing using fluorescent nanothermometers[J]. ACS Nano, 2010, 4(6): 3254-3258.
[51]Dong N N, Pedroni M, Piccinelli F, et al. NIR-to-NIR two-photon excited CaF2: Tm3+, Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging[J]. ACS Nano, 2011, 5(11): 8665-8671.
[52]Gruber A, Drabenstedt A, Tietz C, et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers[J]. Science, 1997, 276(5321):2012-2014.
[53]Balasubramanian G, Chan I Y, Kolesov R, et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions[J]. Nature, 2008, 455(7213): 648-651.
[54]Taylor J, Cappellaro P, Childress L,et al. High-sensitivity diamond magnetometer with nanoscale resolution[J]. Nature Phys,2008,7:810-816.
[55]Fu C C, Lee H Y, Chen K, et al. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers[J]. Proceedings of the National Academy of Sciences, 2007, 104(3): 727-732.
[56]Acosta V M, Bauch E, Ledbetter M P, et al. Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond[J]. Physical Review Letters, 2010, 104(7): 070801.
[57]Chen X D, Dong C H, Sun F W, et al. Temperature dependent energy level shifts of nitrogen-vacancy centers in diamond[J]. Applied Physics Letters, 2011, 99(16): 161903.
[58]Toyli D M, Christle D J, Alkauskas A,et al. Measurement and control of single nitrogen-vacancy center spins above 600 K[J]. Physical Review X, 2012, 2(3): 031001.
[59]Neumann P,Jakobi I,Dolde F,et al.High-precision nanoscale temperature sensing using single defects in diamond[J].Nano Letters,2013,13(6):2738-2742.
[60]Kucsko G, Maurer P C, Yao N Y, et al. Nanometre-scale thermometry in a living cell[J]. Nature, 2013, 500(7460): 54-58.
[61]Laraoui A, Aycock-Rizzo H, Lu X, et al. Imaging thermal conductivity with nanoscale resolution using a scanning spin probe[J]. Nature Communications, 2015, 6: 8954.
[62]Neeraj P,Meraj H K, Markus P,et al. Intracellular Trafficking of Fluorescent Nanodiamonds and Regulation of Their Cellular Toxicity[J]. ACS omega, 2017, 2(6): 2689-2693.
[63]Sekiguchi T, Sotoma S, Harada Y. Fluorescent nanodiamonds as a robust temperature sensor inside a single cell[J]. Biophysics and Physicobiology, 2018, 15: 229-234.
[64]Fu C, Lee H, Chen K, et al. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(3): 727-732.
[65]Albers A E, Chan E M, McBride P M, et al. Dual-emitting quantum dot/quantum rod-based nanothermometers with enhanced response and sensitivity in live cells[J]. Journal of the American Chemical Society, 2012, 134(23): 9565-9568.
[66]Qiao J, Chen C F, Qi L, et al. Intracellular temperature sensing by a ratiometric fluorescent polymer thermometer[J]. Journal of Materials Chemistry B, 2014, 2(43): 7544-7550.
[67]Wang Z Y, Ma X Q, Zong S F, et al. Preparation of a magnetofluorescent nano-thermometer and its targeted temperature sensing applications in living cells[J]. Talanta, 2015, 131: 259-265.
[68]Wang N, Liu G Q, Leong W H, et al. Magnetic criticality enhanced hybrid nanodiamond thermometer under ambient conditions[J]. Physical Review X, 2018, 8(1): 011042. |
|
|
|