|
|
An Optimized Weighting Method for Atomic Clock Ensemble |
YU Hang1,2,ZHANG Lei1,SONG Wen-xia2,WANG Yu-zhuo2 |
1. Department of Artificial Intelligence and Data Science, Hebei University of Technology, Tianjin 300130, China
2. National Institute of Metrology, Beijing 100029, China |
|
|
Abstract Atomic clock group integration technology is widely used in time keeping systems to maintain the accuracy, stability and continuity of time scale. However, there is always a certain correlation between atomic clocks in the same laboratory, which limits the performance of atomic time scales. Based on the correlation between the atomic clock ensemble and its covariance matrix, this paper investigates the influence of same environmental factors on the frequency characteristics of atomic clock. A new weighting method for atomic clock ensemble is designed with optimization theory. It was applied to the cesium clock ensemble at NIM. The results showed the new method could reduce greatly the frequency instability of the clock ensemble.
|
Received: 16 September 2020
Published: 08 April 2022
|
|
|
|
|
[1] Gdel M, Furthner J. Robust Ensemble Time Onboard a Satellite[C]// Proceedings of the 2017 International Technical Meeting of The Institute of Navigation. 2017.
[2] Meynadier F, Delva P, Lafitte C L P, et al. Atomic clock ensemble in space (ACES) data analysis[J]. Classical & Quantum Gravity , 2018, 35(3): 035018.
[3] Mishagin K G, Belyaev A A, Arkhipov N S, et al. Issues of Back-Up and Control in an Ensemble of Atomic Clocks Based on Hydrogen Masers[J]. Measurement Techniques , 2018, 61(8): 767-773.
[4] Jiang M, Dong S, Wu W. Research on time scale algorithm based on hydrogen masers[J]. IEEE Instrumentation & Measurement Magazine , 2020, 23(5): 35-40.
[5] López-Romero J M, Lombardi M A, de Carlos-López E, et al. Comparison of the Multinational SIM Time Scale to UTC and UTCr[J]. IEEE Transactions on Instrumentation and Measurement , 2020, 69(7): 4445-4452.
[6] 黄艳, 张晗, 高源. 地方时间标准建立方案的研究[J]. 计量学报, 2015, 36(6): 646.
Huang Y, Zhang H, Gao Y. Research on the Establishing Scheme of Local Time Standard[J]. Acta Metrologica Sinica , 2015, 36(6): 646.
[7] 黄艳, 高源. 本地时标评价方法的研究[J]. 计量学报, 2012, 33(6): 569-571.
Huang Y, Gao Y. A Study on Evalution of Local Time Scale[J]. Acta Metrologica Sinica , 2012, 33(6): 569-571.
[8] Madjarov I S, Cooper A, Shaw A L, et al. An atomic array optical clock with single-atom readout[J]. Physical Review X , 2019, 9(4): 041052.
[9] Zheng ming, Wang. Experiments on a time scale algorithm for introducing hydrogen masers into an ensemble of caesium clocks[J]. Metrologia , 2008, 45(6): S38-S41.
[10] Torcaso F, Ekstrom C R, Burt E A, et al. Estimation Frequency Stability and Cross Correlation[C]//90th Annual Precise Time and Time Interval (PTTI) Meeting, 1998.
[11] Lantz R, Calosso C E, Rubiola E, et al. Method to Compute the Confidence Intervals for the Three-cornered Hat and for Groslambert Covariance[C]//IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2019.
[12] Tihonov A N. Solution of incorrectly formulated problems and the regularization method[J]. Observatory , 1962.
[13] Tibshirani R. Regression shrinkage and selection via the lasso: a retrospective[J]. Journal of the Royal Statal Society , 1996, 58, 273-282.
[14] Efron B, Hastie T, Tibshirani J R. Least Angle Regression[J]. Annals of Stats , 2004, 32(2): 407-451.
[15] Zou H. The Adaptive Lasso and Its Oracle Properties[J]. Publications of the American Statal Association , 2006, 101(476): 1418-1429.
[16] Zou H, Hastie T. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statal Society , 2005, 67(5): 768-768.
[17] Lukas M, Sara V D G, Peter B. The Group Lasso for Logistic Regression[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology) , 2008, 70(1): 53-71.
[18] Simon N, Friedman J, Hastie T, et al. A Sparse-Group Lasso[J]. Journal of Computational & Graphical Stats , 2013, 22(2): 231-245.
[19] Wang Y, Chen Y, Gao Y, et al. Atomic clock prediction algorithm: random pursuit strategy[J]. Metrologia , 2017, 54(3): 381-389.
[20] Gao C, Wang B, Zhu X. Investigating the Correlation Between Hydrogen—Maser Clocks in the Same Place[C]//Joint Conference of the IEEE International Frequency Control Symposium and the European Frequency and Time Forum. Denver, CO, USA: 562-564, 2015.
[21] 朱江淼, 陈烨, 高源, 等. 原子钟钟差预测不确定度的建模与分析[J]. 计量学报, 2019, 40(4): 714-720.
Zhu J M, Chen Y, Gao Y, et al. Modeling and Analysis of Prediction Uncertainty of Clock Difference in Atomic Clock[J]. Acta Metrologica Sinica , 2019, 40(4): 714-720.
[22] 王玉琢, 张爱敏, 张越, 等. 一种原子钟频率稳定度的估计方法[J]. 计量学报, 2018, 39 (3): 111-114.
Wang Y Z, Zhang A M, Zhang Y, et al. A Method for Estimating Frequency Stability of Atomic Clock[J]. Acta Metrologica Sinica , 2018, 39 (3): 111-114.
[23] 朱江淼, 王星,高源, 等. 综合多家实验室的原子时标发布系统设计[J]. 计量学报, 2020, 41(2): 238-242.
Zhu J M, Wang X, Gao Y, et al. Design of Atomic Time Scale Publication System for Multiple Laboratories[J]. Acta Metrologica Sinica , 2020, 41(2): 238-242.
[24] 张爱敏, 杨志强, 张越, 等. 铯原子频率标准比对方法研究[J]. 计量学报, 2014, 35(3): 286-290.
Zhang A M, Yang Z Q, Zhang Y, Ma X L. Research on Cesium Frequency Standard Comparison Method[J]. Acta Metrologica Sinica , 2014, 35(3): 286-290. |
|
|
|