|
|
Uncertainty Evaluation on Displacement of Blocking Electrodes in Calculable Capacitor |
WANG Jian-bo,YIN Cong,QIAN Jin,LIU Zhong-you,HUANG Lu,YANG Yan,LU Zu-liang |
National Institute of Metrology, Beijing 100029, China |
|
|
Abstract The calculable capacitor is a classical and fundamental experiment apparatus in precise electromagnetic measurements. It is followed the ‘new’ electromagnetic principle which is firstly introduced by Lampard D G and Thompson A E. The calculable capacitor is the AC impedance primary standard, and its the traceable source of the capacitance, inductance and AC impedance. It is a high-accuracy (at the level of 10-8) apparatus surpassed only by the quantum Josephson voltage and quantum Hall resistance experiments in the electromagnetic metrological field, and it is expected to reach the level of 10-9 through continual improvements and optimizations to improve the uncertainty level of electromagnetic metrology. The basic principle of the displacement measurement in calculable capacitor is presented, and impact factors, including Fabry-Perot interferometer locking, laser wavelength, residual index of refraction of air, cosine error and Gouy phase correction, are analyzed. Combining the repeatability of capacitance produced by calculable capacitor, a relative standard uncertainty of 4.7×10-9 is obtained.
|
Received: 19 March 2021
Published: 08 April 2022
|
|
|
|
|
[1] Lampard D G. A new theorem in electrostatics with applications to calculable standards of capacitance[J]. Proceedings of the IEE-Part C: Monograph , 1957, 104(6): 271-280.
[2] Thompson A M. The cylindrical cross-capacitor as a calculable standard[J]. Proceedings of the IEE-Part B: Electronic and Communication Engineering , 1959, 106(27): 307-310.
[3] Gournay P, Fletcher N, Robertsson L, et al. Progress report on measuring the von Klitzing constant at the BIPM[C]//2016 Conference on Precision Electromagnetic Measurements (CPEM 2016), 2016: 1-2.
[4] Small G W, Fiander J R. Fabrication and Measurement of the Main Electrodes of the NMIA-BIPM Calculable Cross Capacitors[J]. IEEE Transactions on Instrumentation and Measurement , 2011, 60(7): 2489-2494.
[5] Wang Y, Yu Y, Pratt J R. Evaluation of a Continuously Variable Calculable Capacitor[J]. IEEE Transactions on Instrumentation and Measurement , 2017, 66(6): 1503-1510.
[6] 陆祖良, 黄璐, 杨雁, 等. 可动屏蔽型计算电容复现电容单位的方法研究[J]. 计量学报, 2014, 35(6): 521-527.
Lu Z L, Huang L, Yang Y, et al. Research on reproducing SI Unit of Capacitance by the Calculable Capacitor with a Movable Guard Rod[J]. Acta Metrologica Sinica , 2014, 35(6): 521-527.
[7] Lu Z L, Huang L, Yang Y, et al. An Initial Reproduction of SI Capacitance Unit From a New Calculable Capacitor at NIM[J]. IEEE Transactions on Instrumentation and Measurement , 2015, 64(6): 1496-1502.
[8] Huang L, Yang Y, Lu Z L, et al. Practical Application of Latest Optimal Hollow Active Auxiliary Electrode in Vertical Calculable Cross-Capacitor at NIM[J]. IEEE Transactions on Instrumentation and Measurement , 2019, 68(6): 2144-2150.
[9] 黄璐, 杨雁, 陆祖良, 等. 采用电补偿方案的新一代立式计算电容装置[J]. 计量学报, 2020, 41(3): 279-283.
Huang L, Yang Y, Lu Z L, et al. The New Vertical Calculable Cross-capacitor by Adopting the Noval Electrical Compensation Approuch[J]. Acta Metrologica Sinica , 2020, 41(3): 279-283.
[10] Thevenot O, Thuillier G, Sindjui R, et al. Progress report on the determination of RK at LNE[C]//2016 Conference on Precision Electromagnetic Measurements (CPEM 2016), 2016: 1-2.
[11] Gournay P, Rolland B, Chayramy R, et al. Comparison CCEM-K4. 2017 of 10pF and 100pF capacitance standards[J]. Metrologia , 2018, 56(1A): 01001-01001.
[12] Wang J, Qian J, Liu Z Y, et al. Displacement Determination of the Guard Electrode for the New Calculable Capacitor at NIM[J]. IEEE Transactions on Instrumentation and Measurement , 2016, 65(11): 2569-2577.
[13] 王建波, 钱进, 殷聪, 等. 激光锁定Fabry-Perot干涉仪精密测量电容[J]. 红外与激光工程, 2019, 48(3): 0517001.
Wang J B, Qian J, Yin C, et al. Precise capacitance measurement by laser locking Fabry-Perot interferometer[J]. Infrared and Laser Engineering , 2019, 48(3): 0517001.
[14] Thurner K, Braun P F, Karrai K. Fabry-Perot interferometry for long range displacement sensing[J]. Review of Scientific Instruments , 2013, 84(9): 095005.
[15] Durand M, Lawall J, Yicheng W. Frequency comb referenced displacement interferometry for the NIST calculable capacitor[C]//Precision Electromagnetic Measurements (CPEM), 2012 Conference on, 2012: 460-461.
[16] 杨雁, 黄璐, 王维, 等. NIM新一代二端对电容电桥装置[J]. 计量学报, 2020, 41(3): 284-289.
Yang Y, Huang L, Wang W, et al. The Two Terminal Pair Capacitance Bridge at NIM[J]. Acta Metrologica Sinica , 2020, 41(3): 284-289.
[17] 钱进, 刘忠有, 张小平, 等. 一种新型的碘稳定633nm He-Ne激光系统[J]. 计量学报, 2008, 29(1): 10-13.
Qian J, Liu Z Y, Zhang X P, et al. A New Type of Iodine-Stabilized He-Ne Laser at 633nm[J]. Acta Metrologica Sinica , 2008, 29(1): 10-13.
[18] Edlén B. The Refractive Index of Air[J]. Metrologia , 1966, 2(2): 71-80.
[19] Ciddor P E. Refractive index of air: new equations for the visible and near infrared[J]. Applied Optics , 1996, 35(9): 1566-1573. |
|
|
|