|
|
Experimental Study on Scaling Methods of High Accuracy Digital Thermometer Measurement Results |
JIN Zhi-jun1,CHEN Wei-xin1,ZHANG Jun2,ZENG Yong-chun3,LIU Wei1 |
1. National Institute of Metrology, Beijing 100029,China
2. Panran Measurement & Calibration Technology Co Ltd, Taian, Shandong 271000, China
3. Dalian Bocon Science & Technology Co Ltd, Dalian, Liaoning 116000, China |
|
|
Abstract The platinum resistance temperature sensor uses CVD equation, ITS-90 international temperature scale and polynomial equation for indexing, and uses high-precision digital thermometer to display the measurement results of different methods, so as to analyze the influence of different scaling methods on the measurement results of high-precision digital thermometer. The experimental research is carried out at -60~300℃. The results show that the scaling method has a certain influence on the measurement results. Under the condition of high-precision measurement, the stability and accuracy can be improved by selecting the method. The research of scaling method should be based on the stability of platinum resistance temperature thermometer and good accuracy of electrical measuring equipment.
|
Received: 20 January 2022
Published: 23 February 2022
|
|
|
|
|
1]国家技术监督局计量司. 1990国际温标宣贯手册 [M]. 北京: 中国计量出版社, 1990.
[2]奎恩T J. 温度测量 [M]. 凌善康,等译. 北京: 中国计量出版社, 1986.
[3]International Electrotechnical Commission. IEC60751-2008 Industrial Platinum Resistance Thermometer ans Sensors [S]. 2008.
[4]国家质量技术监督局. JJG 229—2010工业铂、 铜热电阻 [S]. 2010.
[5]Fernicola V C, Iacomini L. Approximating the ITS-90 Temperature Scale with Industrial Platinum Resistance Thermometers [J]. Int J Thermophys, 2008, 29: 1817-1827.
[6]Hill K D. Investingating the Behaviour of Industrial Resistance Thermometers from 13.8K to 273.16K [J]. ACTA Metrologica Sinica, 2008, 29 (4A): 55-57.
[7]王颖文,张欣,孙建平,等. -38.8344~156.5985℃温区温标偏差方程外推和内插研究[J]. 计量学报, 2018, 39(6): 816-821.
Wang Y W, Zhang X, Sun J P, et al. Research on Extrapolation and Interpolation of Temperature Scale Deviation Equation over the Temperature -38.8344~156.5985℃[J]. Acta Metrologica Sinica, 2018, 39(6): 816-821.
[8]ASTM E644-11 Standard Test Methods for Testing Indu-strial Resistance Thersensors [S].JJG 160—2007标准铂电阻温度计检定规程 [S].
[10]JJG 161—2010标准水银温度计 [S].
[11]金志军. 精密数字温度计替代标准水银温度计的可行性分析与试验方法探讨 [J]. 计量技术, 2017 (1): 33-35.
[12]姚丽芳, 陈宇, 郑伟, 等. 精密铂电阻温度计的校准方法 [J].上海计量测试, 2014, 41 (4): 21-22.
Yao L F, Chen Y, Zheng W, et al. Study of precision platinum resistance thermometer calibration method[J].Shanghai Measurement and Testing, 2014, 41 (4): 21-22.
[13]陈桂生, 付志勇, 赵晶, 等. 低成本提高工业铂热电阻检定结果可信度方法研究 [J]. 中国测试, 2015, 41 (1): 24-28.
[14]高庆中. 温度计量 [M]. 北京: 中国计量出版社, 2004.
[15]Matthias Nau. 温度的电测 [M]. 张立谦,等译. 北京: 中国计量出版社, 2006.
[16]金志军, 刘薇, 陈伟昕, 等. 标准水银温度计替代研究现状与发展分析 [J]. 工业计量, 2021, 31 (5): 50-51.
[17]于帆,孙建平,李婷,等. 新制标准铂电阻温度计首次退火特性理论模型及验证. 2021,42(6): 759-764.
Yu F, Sun J P, Li T, et al. Theoretical Model and Verification of First Annealing Characteristic of the New Standard Platinum Resistance Thermometer. 2021,42(6): 759-764. |
|
|
|