|
|
Exploration of Bi-In-Sn Alloy Melting Temperature Plateau Optimization |
RUAN Yi-ming1,LING Zhong-qian1,LI Ting2,SUN Jian-ping2,WANG Hong-jun2,YIN Yue3,YANG Jin-nan1 |
1. College of Metrology & Measurement Engineering, China Jiliang University,Hangzhou,Zhejiang 310018, China
2. National Institute of Metrology, Beijing 100029, China
3. Shandong Institute of Metrology, Jinan, Shandong 250014, China |
|
|
Abstract In order to improve the high-precision measurement level of infrared remote sensing, exploring and developing secondary fixed points suitable for the infrared remote sensing temperature measurement range has become an important method to improve the accuracy of on orbit temperature calibration. Aiming at the temperature range (190~350K) involved in the field of infrared remote sensing, Bi-In-Sn ternary alloy fixed point was developed. To improve the reproducibility level of ternary alloy temperature plateau, the ternary alloy fixed point was preproccessed by the pre-melting method, and the effects of different thermal conditions on the ternary alloy temperature plateau were analyzed to obtain the reproduction method suitable for the ternary alloy fixed point. The results show that the reproducibility level of the fixed-point temperature plateau can be optimized through the proper preheating and pre-melting method. The melting temperature plateau of Bi-In-Sn alloy fixed point developed lasts for more than 7 hours, and the reproducibility is better than 1.3mK; by assigning the eutectic point of Bi-In-Sn, the temperature is 333.7318K and the expanded uncertainty is 3.0mK (k=2).
|
Received: 16 November 2021
Published: 23 February 2022
|
|
|
|
|
[1]胡朝云, 郝小鹏, 宋健, 等. 红外高光谱大气探测仪星载固定点黑体辐射源的研制[J]. 计量学报, 2019, 40(2): 232-239.
Hu C Y, Hao X P, Song J, et al. Development of Blackbody Radiation Sources at Fixed Point on Satellite of Infrared Hyperspectral Atmospheric Detector[J]. Acta Metrologica Sinica, 2019, 40(2): 232-239.
[2]Anderson J G, Dykema J A, Goody R M, et al. Absolute, spectrally-resolved, thermal radiance: a benchmark for climate monitoring from space[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2004, 85(3-4): 367-383.
[3]Ohring G, Tansock J, Emery W, et al. Achieving satellite instrument calibration for climate change[J]. Eos Transactions American Geophysical Union, 2013, 88(11): 136-136.
[4]张金涛,梁宇,冯晓娟. 替代汞三相点的研究和新温标展望[J]. 计量学报, 2022, 43(2): 145-150.
Zhang J T, Liang Y, Feng X J. Prospect for Replacement of the Mercury Triple Point and a New Temperature Scale[J]. Acta Metrologica Sinica, 2022, 43(2): 145-150.
[5]孙建平, 曾凡超, 张琳, 等. 微型镓基共晶点现场精密铂电阻温度计校准研究[J]. 计量学报, 2015, 36(z1) : 32-36.
Sun J P, Zeng F C, Zhang L, et al. Onsite Calibration of the Precision Industrial Platinum Resistance Thermometer Based on Gallium and Gallium-Based Small-size Eutectic Points[J]. Acta Metrologica Sinica, 2015, 36(z1): 32-36.
[6]徐春媛, 夏蔡娟, 郝小鹏, 等. 准绝热法微型镓固定点相变特性研究[J]. 计量学报, 2017, 38(1): 19-22.
Xu C Y, Xia C J, Hao X P, et al. Research on Phase Change Characteristic of Miniature Gallium Fixed-point Using Quasi-adiabatic Measurement Method [J]. Acta Metrologica Sinica, 2017, 38(1): 19-22.
[7]刁福广, 蔡晋辉, 孙建平, 等. Ga-In-Sn微型共晶点相变特性研究[J]. 计量学报, 2019, 40(3): 421-426.
Diao F G, Cai J H, Sun J P, et al. Study on Phase Transition Characteristic of Mini Ga-In-Sn Eutectic Fixed Point. Acta Metrologica Sinica, 2019, 40(3): 421-426.
[8]Strouse G F. NIST Realization of the ITS-90 Gallium Fixed Point[R]. NIST, 2005.
[9]曾凡超, 曾兵, 孙建平, 等. 基于微型Ga-Sn共晶点的精密铂电阻温度计现场标定[J]. 计量学报, 2015, 36(z1): 28-31.
Zeng F C, Zeng B, Sun J P, et al. Precision Platinum Resistance Thermometer inthe Field Calibration Based on Miniature Ga-Sn Eutectic Point[J]. Acta Metrologica Sinica, 2015, 36(z1): 28-31.
[10]王宁, 闫小克, 张明宇, 等. 高精度复现铟凝固点[J]. 计量学报, 2021, 42(5): 582-588.
Wang N, Yan X K, Zhang M Y, et al. Highly Precise Realization of the Indium Freezing Point[J]. Acta Metrologica Sinica, 2021, 42(5): 582-588.
[11]曾佳旭, 潘江, 孙建平, 等. 微型双温度固定点容器研制[J]. 计量学报, 2021, 42(4): 458-462.
Zeng J X, Pan J, Sun J P, et al. Development of Miniature Double Temperature Fixed Point Cell. Acta Metrologica Sinica, 2021, 42(4): 458-462.
[12]孙建平, 陈炜, 邱萍等. 新型镓熔点自动复现装置[J]. 计量学报, 2013, 34(2): 134-137.
Sun J P, Chen W, Qiu P, et al. New Automatic Apparatus of the Melting Point of Gallium[J]. Acta Metrologica Sinica, 2013, 34(2): 134-137.
[13]何沛, 林林, 闫小克, 等. 三段控温固定点炉复现铝凝固点研究[J]. 计量学报, 2021, 42(3): 321-326.
He P, Lin L, Yan X K, et al. Study on the Realization of Aluminum Freezing Point in the Three-zone Temperature Controlled Fixed Point Furnace[J]. Acta Metrologica Sinica, 2021, 42(3): 321-326.
[14]Ancsin J. Manipulating the Melting Behavior of Metal-Metal Eutectics[J]. International journal of thermophysics, 2008, 29(1): 181-189.
[15]况望望. 过冷二元合金的共晶—枝晶生长研究[D]. 西安: 西北工业大学, 2016.
[16]李利峰, 李锐, 闫小克, 等. 镓熔点温坪复现研究[J]. 计量学报, 2020, 41(4): 419-424.
Li L F, Li R, Yan X K, et al. Study on the Realization of Gallium Melting Point Plateau[J]. Acta Metrologica Sinica, 2020, 41(4): 419-424.
[17]徐春媛. 微型固定点相变特性的研究[D]. 西安: 西安工程大学, 2017.
[18]Krapf G, Schalles M, Frhlich T. Estimation of fixed-point temperatures—A practical approach[J]. Measurement, 2011, 44(2): 385-390.
[19]Witusiewicz V T, Hecht U, B Bttger, et al. Thermodynamic re-optimisation of the Bi-In-Sn system based on new experimental data[J]. Cheminform, 2007, 428(1): 115-124.
[20]White D, Ballico M, Del Campo D, et al. Uncertainties in the Realization of the SPRT Sub-ranges of the ITS-90 [J]. International Journal of Thermophysics, 2007, 28(6): 1868-1881.
[21]孙建平, 邱萍, 张金涛, 等. 微量杂质对锌凝固点影响的评估[J]. 计量学报, 2010, 31(3): 223-228.
Sun J P, Qiu P, Zhang J T, et al. The Evaluation of the Influence of Impurities on the Freezing Point of Zinc[J]. Acta Metrologica Sinica 2010, 31(3) : 223-228. |
|
|
|