|
|
Optimization Design of Non-uniform Air Gap Magnetic Field for Low-Frequency Electromagnetic Vibrator |
ZHANG Xu-fei1,2, JIANG Wen-qi1, HU Tian-en1, ZHANG Feng-yang1 |
1. College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
2. Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, Taiyuan, Shanxi 030024, China
|
|
|
Abstract Aiming at the vibration excitation signal distortion problem caused by nonlinearity of air gap magnetic induction intensity of large stroke low-frequency electromagnetic vibrator, a simplified large stroke magnetic circuit mathematical model is established based on the electromechanical coupling model analysis of electromagnetic vibrator and circuit equivalence principle. And the non-uniform distribution characteristics of air gap magnetic induction intensity are simulated and analyzed based on ANSYS Maxwell software. Based on the continuous mixed integer nonlinear programming algorithm, the distribution characteristics of air gap magnetic induction intensity corresponding to different nonlinear parameters of inner yoke outline and end face structure are simulated and analyzed respectively, and the optimal solutions of variable air gap and variable cross-section magnetic circuit with minimum nonuniformity are obtained. The simulation results show that the non-uniformity of 25.95% before optimization is reduced to 7.09% and 2.70% respectively. The optimized magnetic circuit structure can effectively improve the nonlinearity of air gap magnetic induction intensity of large stroke low-frequency electromagnetic vibrator, reduce the distortion of output vibration signal and improve the accuracy of low-frequency vibration calibration.
|
Received: 16 August 2021
Published: 06 January 2022
|
|
|
|
|
[1] Shimoda T, Kokuyama W, Nozato H. Primary calibration system for digital accelerometers [J]. Metrologia, 2021, 58(4): 045002.
[2] 凌田昊, 郑慧峰, 何虹儒, 等. 基于振动声调制的微裂纹定位成像研究[J]. 计量学报, 2020, 41(2): 214-220.
Ling T H, Zheng H F, He H R, et al. Research on micro-crack localization imaging based on vibro-acoustic modulation [J]. Acta Metrologica Sinica, 2020, 41(2): 214-220.
[3] 鲁敏,胡红波. 基于正弦激励的压电加速度计模型参数辨识[J]. 计量学报, 2020, 41(1): 55-59.
Lu M, Hu H B. Calibration of Piezoelectric Accelerometers Dynamic Characteristics using Primary Vibration Calibration[J]. Acta Metrologica Sinica, 2020, 41(1): 55-59.
[4] 于梅. 低频超低频振动计量技术的研究与展望[J]. 计量学报, 2007, 26(11): 83-86, 94.
Yu M. Research prospects of metrology technology for low-frequency and super low-frequency vibration [J]. Acta Metrologica Sinica, 2007, 26(11): 83-86, 94.
[5] 于梅,何闻,刘爱东,等. 超低频振动国家计量基准装置的研究与建立[J]. 计量学报, 2011, 32(2): 97-100.
Yu M, He W, Liu A D, et al. Study and establishment of the national standard of the ultra-low frequency vibration [J]. Acta Metrologica Sinica, 2011, 32(2): 97-100.
[6] He W, Zhang X F, Wang C Y, et al. A long-stroke horizontal electromagnetic vibrator for ultralow-frequency vibration calibration[J]. Measurement Science and Technology, 2014, 25(8): 085901.
[7] ISO 16063-11. Methods for the calibration of vibration and shock transducers, Part 11: Primary vibration calibration by laser interferometry[S]. 1999.
[8] 王朝, 蔡晨光, 杨明, 等. 基于激光干涉仪数字信号解码的振动校准方法[J]. 计量学报, 2021, 42(3): 282-286.
Wang Z, Cai C G, Yang M, et al. Vibration calibration method based on the decoding of heterodyne interferometer output S/PDIF digital signal [J]. Acta Metrologica Sinica, 2021, 42(3): 282-286.
[9] 胡红波, 杨丽峰, 于梅. 零差干涉仪用于振动校准中关键技术的研究[J]. 计量学报, 2018, 39(3): 368-372.
Hu H B, Yang L F, Yu M. Study on key technologies of vibration calibration using homodyne interferometer [J]. Acta Metrologica Sinica, 2018, 39(3): 368-372.
[10] Nicklich H, Mende M. Calibration of very-low-frequency accelerometers-a challenging task [J]. Sound & Vibration, 2011, 45(5): 1521-1527.
[11] Ripper G P, Dias R S, Garcia G A. Primary accelerometer calibration problems due to vibration exciters [J]. Measurement, 2009, 42(9): 1363-1369.
[12] 魏燕定. 超低频标准振动台波形失真度近似解析解[J]. 振动与冲击, 2000, 19(3): 49-51.
Wei Y D. Approximate analytical solution of waveform distortion of ultra-low frequency standard vibrator [J]. Journal of Vibration and Shock, 2000, 19(3): 49-51.
[13] 陈群. 长行程超低频水平向电磁振动台中关键技术问题的研究[D]. 杭州: 浙江大学, 2013.
[14] Liu Y, Zhang M,Zhu Y, et al. Optimization of voice coil motor to enhance dynamic response based on an improved magnetic equivalent circuit model [J]. IEEE transactions on magnetics, 2011, 47(9): 2247-2251.
[15] 朱彩红. 基于Ansoft的永磁无刷直流电动机磁场有限元分析[J]. 微电机, 2010, 43(6): 103-105.
Zhu C H. Magnetic field finite element analysis of permanent magnet brushless DC motor based on Ansoft [J]. Micromotors, 2010, 43(6): 103-105.
[16] Liao L D, Chao C P, Chen J T, et al. A miniaturized electromagnetic generator with planar coils and its energy harvest circuit [J]. IEEE Transactions on Magnetics, 2009, 45(10): 4621-4627.
[17] 杨超君, 孔令营, 张涛, 等. 调磁式异步磁力联轴器三维气隙磁场研究[J]. 机械工程学报, 2016, 52(8): 8-15.
Yang C J, Kong L Y, Zhang T, et al. Research on 3D air-gap magnetic field of field modulated asynchronous magnetic couplings [J]. Journal of Mechanical Engineering, 2016, 52(8): 8-15.
[18] 张旭飞, 张锋阳, 李凯, 等. 基于遗传算法的低频标准振动台簧片式回复结构优化[J]. 计量学报, 2021, 42(11): 1459-1465
Zhang X F, Zhang F Y, Li K, et al. Optimization of Leaf-spring-type Recovery Mechanism for Low-frequency Standard Vibrator Based on Genetic Algorithm[J]. Acta Metrologica Sinica, 2021, 42(11): 1459-1465.
[19] Lang G F, Snyder D. Understanding the physics of electrodynamic shaker performance [J]. Sound and Vibration, 2001, 35(10): 24-33.
[20] Lang G F. Electrodynamic shaker fundamentals[J] . Sound and Vibration, 1997, 31(4): 14-23. |
|
|
|