|
|
Ultrasonic Defect Echoes Identification Based on EEMD and Low-Rank Sparse Decomposition |
ZHOU Hang-rui1, SUN Jian1, XU Hong-wei1, MIAO Cun-jian2, SONG Xin2 |
1. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
2. Zhejiang Provincial Special Equipment Inspection And Research Institute, Hangzhou, Zhejiang 310012, China |
|
|
Abstract In order to detect the minor defect echoes of metal materials from noisy signal in ultrasonic nondestructive testing, a ultrasonic defect echoes identification method based on ensemble empirical mode decomposition (EEMD) and low-rank sparse decomposition was proposed. First, the EEMD was performed on the defect detection signal to obtain a series of intrinsic mode functions (IMF). The similarity measurement method based on probability density function was used to select irrelevant IMFs and these IMFs were discarded to achieve preliminary noise reduction. Then a denoising method based on short-time Fourier transform (STFT) and low-rank sparse decomposition algorithm was used for further noise suppression of the reconstructed signal. Finally, the inverse STFT was performed to obtain denoised defect echo signal in time domain. The simulated and measured signals are processed separately, and the results show that the method is effective in defect echo detection.
|
Received: 23 August 2020
Published: 06 January 2022
|
|
|
|
|
[1] Matz V, Smid R, Starman S, et al. Signal-to-noise ratio enhancement based on wavelet filtering in ultrasonic testing[J]. Ultrasonics, 2009, 49(8): 752-759.
[2] Karpur P, Canelones O J. Split spectrum processing: a new filtering approach for improved signal-to-noise ratio enhancement of ultrasonic signals[J]. Ultrasonics, 1992, 30(6): 351-357.
[3] Wu B, Huang Y, Krishnaswamy S. A Bayesian approach for sparse flaw detection from noisy signals for ultrasonic NDT[J]. NDT & E International, 2017, 85: 76-85.
[4] 朱江淼, 闫迪, 高源, 等. 基于改进EEMD和LSSVM的单频周跳探测与修复方法[J]. 计量学报, 2019, 40(3): 491-497.
Zhu J M, Yan D, Gao Y, et al. The Method for Single-frequency Cycle-slip Detection and Reparation Based on Modified EEMD and LSSVM[J]. Acta Metrologica Sinica, 2019, 40(3): 491-497.
[4] 樊凤杰,白洋,纪会芳. 基于EEMD-ICA的脑电去噪算法研究[J]. 计量学报, 2020, 41(3): 395-400.
Fan F J, Bai Y, Ji H F. Denoising Method of EEG Signal Based on EEMD-ICA[J]. Acta Metrologica Sinica, 2020, 41(3): 395-400.
[5] 汪朝海, 蔡晋辉, 曾九孙. 基于经验模态分解和主成分分析的滚动轴承故障诊断研究[J]. 计量学报, 2019, 40(6): 1077-1082.
Wang C H, Cai J H, Zeng J S. Research on Fault Diagnosis of Rolling Bearing Based on Empirical Mode Decomposition and Principal Component Analysis[J]. Acta Metrologica Sinica, 2019, 40(6): 1077-1082.
[6] 姜万录, 孔德田, 李振宝, 等. 基于完备总体经验模态分解和模糊熵结合的液压泵退化特征提取方法[J]. 计量学报, 2020, 41(2): 202-209.
Jiang W L, Kong D T, Li Z B, et al. Degradation Feature Extraction Method of Hydraulic Pump Based on Integrated Complete Ensemble Empirical Mode Deco-mposition and Fuzzy Entropy[J]. Acta Metrologica Sinica, 2020, 41(2): 202-209.
[7] 郑慧峰, 曹文旭, 王月兵, 等. 基于经验模态分解的聚焦超声非线性声场检测[J]. 计量学报, 2017, 38(5): 616-620.
Zheng H F, Cao W X, Wang Y B, et al. The Focused Ultrasound Nonlinear Acoustic Field Detection Method Based on Empirical Mode Decomposition[J]. Acta Metrologica Sinica, 2017, 38(5): 616-620.
[8] 王志芳, 王书涛, 王贵川, 等. 基于小波优化EEMD的二氧化硫检测[J]. 计量学报, 2020, 41(6): 752-758.
Wang Z F, Wang S T, Wang G C, et al. Detection of SO2 Based on EEMD Optimized by Wavelet[J]. Acta Metrologica Sinica, 2020, 41(6): 752-758.
[9] 张洪, 张郁, 王通德. 基于局部熵的超声信号阈值降噪方法[J]. 探测与控制学报, 2019, 41(1): 106-112.
Zhang H, Zhang Y, Wang T. Ultrasonic Signal Threshold De-noising Based on Local Entropy[J]. Journal of Detection & Control, 2019, 41(1): 106-112.
[10] Feng W, Zhou X, Zeng X, et al. Ultrasonic Flaw Echo Enhancement Based on Empirical Mode Decomposi-tion[J]. Sensors, 2019, 19(2): 236.
[11] 曾祥, 周晓军, 杨辰龙, 等. 基于经验模态分解和S变换的缺陷超声回波检测方法[J]. 农业机械学报, 2016, 47(11): 414-420.
Zeng X, Zhou X J, Yang C L, et al. Ultrasonic Defect Echoes Identification Based on Empirical Mode Decomposition and S-transform[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(11): 414-420.
[12] Candès E J, Li X, Ma Y, et al. Robust principal component analysis?[J]. Journal of the ACM (JACM), 2011, 58(3): 1-37.
[13] Komaty A, Boudraa A O, Augier B, et al. EMD-based filtering using similarity measure between probability density functions of IMFs[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 63(1): 27-34.
[14] Zhou T, Tao D. Godec: Randomized low-rank & sparse matrix decomposition in noisy case[C]//Proceedings of the 28th International Conference on Machine Learning, ICML 2011. 2011: 33-40.
[15] Shao Y, Srinivasan S, Jin Z, et al. A computational auditory scene analysis system for speech segregation and robust speech recognition[J]. Computer Speech & Language, 2010, 24(1): 77-93.
[16] 杜必强, 孙立江. 变分模态分解和熵理论在超声信号降噪中的应用[J]. 中国工程机械学报, 2017, 15(4): 310-317.
Du B Q, Sun L J. Application of variational mode decomposition and entropy theory in ultrasonic signal denoising[J]. Chinese Journal of Construction Machinery, 2017, 15(4): 310-317. |
|
|
|