|
|
Uncertainty Analysis of 1 on 1 Laser Induced Damage Threshold Measurement |
BA Rong-sheng, LI Jie, ZHOU Xin-da, ZHENG Yin-bo,XU Hong-lei, DING Lei, LI Ya-jun, NA Jin |
Research Center of Laser Fusion, CAEP, P.O.Box 919-984, Mianyang, Sichuan 621900, China |
|
|
Abstract According to the demand of measurement uncertainty evaluation for laser induced damage threshold tested by ISO 21254 method, the main uncertainty influencing factors are systematically studied. The energy density and the damage probability measurement uncertainty are analyzed by GUI method. The measurement uncertainty induced by linear fitting method is investigated by the Monte Carlo method. The influences on the fitting result is also compared by different residual error models in the procedure of the damage probability and energy density linear fitting. The analysis shows that the least square residual error model considering both damage probability error and energy density error has the best error resistance performance during the linear fitting process and it can effectively reduce the error influence on the damage threshold induced by the damage probability error and the energy density error. The same damage testing experiment data is treated by the ISO 21254 method and the Monte Carlo method. The result indicates that the threshold uncertainty is smaller and the threshold value is bigger deduced by the ISO 21254 method. Once using the ISO 21524 method, the laser induced damage threshold would be overestimated.
|
Received: 09 September 2020
Published: 06 January 2022
|
|
|
|
|
[1] Manes K R, Spaeth M L, Adams J J, et al. Damage Mechanisms Avoided or Managed for NIF Large Optics[J]. Fusion Science And Technology, 2016, 69: 146-249.
[2] Soileau M J, Wood R M, Jianda Shao, et al. Laser-Induced Damage in Optical Materials[M]. Boca Raton: CRC Press Taylor & Francis Group, 2015.
[3] 张问辉, 胡建平, 陈建国, 等. 高功率激光诱导光学表面损伤阈值测量的不确定度分析[J]. 强激光与粒子束, 2005, 17(4): 529-532.
Zhang W H, Hu J P, Chen J G, et al. Analysis of uncertainty of measured laser-induced damage threshold[J]. High Power Laser and Particle Beams, 2005, 17(4): 529-532.
[4] 李大伟, 赵元安, 贺洪波, 等. 光学表面激光损伤阈值的指数拟合法以及测试误差分析[J]. 中国激光, 2008, 35(2): 273-275.
Li D W, Zhao Y A, He H B, et al. Exponetial fitting of laser damage Threshold and analysis of testing Errors[J]. Chines Journal of Lasers, 2008, 35(2): 273-275.
[5] 徐均琪, 苏俊宏, 葛锦蔓, 等. 光学薄膜激光损伤阈值测量不确定度[J]. 红外与激光工程, 2017, 56(8): 1-7.
Xu J Q, Su J H, Ge J M, et al. Measurement uncertainty of laser-induced damage threshold of the optical thin films[J]. Infrared and Laser Engineering, 2017, 56(8): 1-7.
[6] 哈罗德·杰弗里. 概率论:第3版[M]. , 龚凤乾,译. 厦门: 厦门大学出版社, 2014.
[7] 肖明耀. 实验误差估计与数据处理[M]. 北京: 科学出版社, 1980.
[8] 刘庆, 邵志新. 回归分析的直线拟合不确定度探讨[J]. 中国测试, 2009, 35(3): 41-44.
Liu Q, Shao Z X. Discussion of linear fitting uncertainty of regress analysis[J]. China Measurement & Test, 2009, 35(3): 41-44.
[9] 刘渊, 丁建华, 王茂仁. 直线拟合中的不确定度计算[J]. 物理与工程, 2009, 19(2): 25-27.
Liu Y, Ding J H, Wang M R. Calculation of uncertainty in linear fitting[J]. Physics and Engineering, 2009, 19(2): 25-27.
[10] Wu W L, Zhang Y, Fu Z Q, et al. The Symmetrical Least Square Method on Zero-Crossing Linear Fitting. [C]//2012 4th Electronic System-Integration Technology Conference. IEEE, 2012: 27-30.
[11] 许金鑫, 由强. 任意阶次多项式最小二乘拟合不确定度计算方法与最佳拟合阶次分析[J]. 计量学报, 2020, 41(3): 388-392.
Xu J X, You Q. Uncertainty Calculation for Arbitrary Order Polynomial Least-square Fittingand Analysis of the Best Fitting Order[J]. Acta Metrologica Sinica, 2020, 41(3): 388-392.
[12] GB/T 27418-2017 测量不确定度评定和表示[S]. 2017.
[13] GB/T 27419-2018 测量不确定度评定和表示 补充文件1: 基于蒙特卡洛方法的分布传播[S], 2018.
[14] 李德红, 黄建微, 沙比哈·吐尔逊, 等. g因子的蒙特卡罗模拟计算[J]. 计量学报, 2019, 40(5): 920-923.
Li D H, Huang J W, Shabiha Tuerxun, et al. Monte Carlo Simulation Method for g Factor[J]. Acta Metrologica Sinica, 2019, 40(5): 920-923.
[15] 江文松, 王中宇, 罗哉, 等. 基于蒙特卡罗法的冲击力溯源系统不确定度评定[J]. 计量学报, 2020, 41(4): 448-454.
Jiang W S, Wwang Z Y, Luo Z, et al. Uncertainty Evaluation on the Traceable Measurement System ofthe Impact Force Based on a Monte Carlo Method[J]. Acta Metrologica Sinica, 2020, 41(4): 448-454.
[16] 方兴华, 宋明顺, 顾龙芳, 等. 基于自适应蒙特卡罗方法的测量不确定度评定 [J]. 计量学报, 2016, 37 (4): 452-456.
Fang X H, Song M S,Gu L F, et al. Application of Adaptive Monte Carlo Method on Measurement Uncertainty Evaluation [J]. Acta Metrologica Sinica, 2016, 37 (4): 452-456. |
|
|
|