|
|
Erosion and Corrosion Defect Influence on Flow Velocity inPipeline Using Ultrasonic Measurement |
WANG Xing-guo,ZHANG Lu-xin,HUANG Zhi-cheng,LI Wu-hao,FAN Yue-nong |
School of Mechanical and Electronic Engineering, Jingdezhen Ceramic Institute, Jingdezhen, Jiangxi 333403, China |
|
|
Abstract Considering the problem that the erosion and corrosion from the pipe wall will lead to the leakage of the fluid,the ultrasonic Doppler velocity profiler (UVP) is used to measure the fluid velocity distribution in the pipeline to determine damage degree of the pipe wall.Numerical simulations are carried out to analyze the fluid state under different reynolds numbers and different defects by establishing a fluid model in the pipeline with defects.Using the plexiglass with different prefabricated defects wall thickness as an experimental object.The parameters of UVP include the ultrasonic basic frequency is 8MHz and the incident angle is 10 degree,respectively.Both the CFD numerical simulation and the UVP experimental results show the fluid velocity distribution has a great difference at different locations from the defect,which is manifested by the fact that the defect is larger at the defect location to cause the fluid velocity distribution gentler.Vortex phenomenon occurs at the defect critical location, which increases distinctly with the increasing of the defect and flow rate.There is no obvious difference between the fluid velocity distribution after and before the location of the defect.
|
Received: 08 May 2020
Published: 06 December 2021
|
|
|
|
|
[1]郑涵文, 严燕辉, 赵建平. 高流速高含固条件下高压差调节阀冲刷腐蚀规律 [J]. 流体机械, 2017, 45 (10): 25-30.
Zheng H W, Yan Y H, Zhao J P. Erosion rules of high differential pressure control vales under the condition of high velocity and high solid content [J]. Fluid Machinery, 2017, 45 (10): 25-30.
[2]方立德, 郎月新, 赵宁, 等. 基于同轴线相位法的两相流含气率测量研究 [J]. 计量学报, 2020, 41 (4): 434-440.
Fang L D, Lang Y X, Zhao N, et al. Study on Measurement of Two-phase Gas-liquid Flow Based on Coaxial Phase [J]. Acta Metrologica Sinica, 2020, 41 (4): 434-440.
[3]于陆军, 曹久莹, 马宇明, 等. 横板型稳压罐气液两相流场数值模拟及流量稳定性研究 [J]. 计量学报, 2020, 41 (6): 729-734.
Yu L J, Cao J Y, Ma Y M, et al. Numerical Simulation on Gas-liquid Two-phase Flow Field in the Horizontal-baffle Type Surge Tank and Study on the Flow Stability [J]. Acta Metrologica Sinica, 2020, 41 (6): 729-734.
[4]于陆军, 侯松梁, 马宇明, 等. 基于流体体积函数模型的横板型稳压罐内气液两相流场仿真研究 [J]. 计量学报, 2019, 40 (6): 1050-1056.
Yu L J, Hou S L, Ma Y M, et al. Simulation Study on Gas-liquid Two-phase Flow in the Horizontal-baffle Type Surge Tank Based on the Volume of Fluid Model [J]. Acta Metrologica Sinica, 2019, 40 (6): 1050-1056.
[5]李亚坤, 王佳, 胡凡, 等. 薄液层下金属腐蚀行为研究方法的进展 [J]. 腐蚀科学与防护技术, 2007, 19 (6): 423-426.
Li Y K, Wang J, Hu F, et al. Progress of research methods of metal corrosion under thin electrolyte film [J]. Corrosion Science and Protection Technology, 2007, 19 (6): 423-426.
[6]代真, 沈士明, 丁国铨. 金属在固液两相流体中的冲刷腐蚀及其防护腐蚀与防护 [J]. 腐蚀与防护, 2007, 28 (2): 86-89.
Dai Z, Shen S M, Ding G Q. Erosion-corrosion and protection of metals in fluids with solid particles [J]. Corrosion & Protection, 2007, 28 (2): 86-89.
[7]王勇, 邢建东, 马胜强, 等. Fe-B合金在锌液中冲刷与腐蚀的交互作用 [J]. 西安交通大学学报, 2017, 49 (7): 92-97.
Wang Y, Xing J D, Ma S Q, et al. Erosion-Corrosion Interaction on Fe-B Alloy in Flowing Liquid Zinc [J]. Journal of Xi’an Jiaotong University, 2017, 49 (7): 92-97.
[8]张福祥, 巴旦, 刘洪涛, 等. 压裂过程超级13Cr油管冲刷腐蚀交互作用研究 [J]. 石油机械, 2014, 42 (8): 89-93.
Zhang F X, Ba D, Liu H T, et al. Study on the Erosion and Corrosion of Super 13Cr Tubing in Fracturing [J]. China Petroleum Machinery, 2014, 42 (8): 89-93.
[9]王贵利, 马娜, 陈勇. 碳钢管道流动加速腐蚀与冲刷腐蚀的差异分析 [J]. 核动力工程, 2012, 33 (2): 75-78.
Wang G L, Ma N, Chen Y. Difference between Flow Accelerated Corrosion and Erosion-Corrosion of Carbon Steel Pipes [J]. Nuclear Power Engineering, 2012, 33 (2): 75-78.
[10]Nesic S, Li W, Pots B F M, et al. A direct meas-urement of wall shear stress in multiphase flow-Is it an important parameter in CO2 corrosion of carbon steel pipelines? [J]. Corrosion Science, 2016, 110: 35-45.
[11]Ball G J, Howell B P, Leighton T G, et al. Shock-induced collapse of a cylindrical air cavity in water: a Free-Lagrange simulation [J]. Shock Waves, 2000, 10:265-276.
[12]刘素贞, 张严伟, 张闯, 等. 电磁超声管道周向兰姆波仿真分析及缺陷测量特性研究 [J]. 电工技术学报, 2017, 32 (22): 144-151.
Liu S Z, Zhang Y W, Zhang C, et al. Research on Simulation Analysis of Electromagnetic Ultrasonic Circu-mferential Lamb Waves and Defect Fwathure Detection in Pipeline [J]. Transactions of China Electrotechnical Society, 2017, 32 (22): 144-151.
[13]费璟璐, 张涛, 杨晓蕾, 等. 蒸汽系统管配件冲刷腐蚀及泄漏失效分析 [J]. 金属热处理, 2019, 44 (s1): 295-298.
Fei J L, Zhang T, Yang X L, et al. Failure analysis on leakage of pipe fittings in steam system due to erosion-corrosion interaction [J]. Heat Treatment of Metals, 2019, 44 (S1): 295-298.
[14]魏木孟, 杨博均, 刘洋洋, 等. Cu-Ni合金管海水冲刷腐蚀研究现状及展望 [J]. 中国腐蚀与防护学报, 2016, 36(6): 513-521.
Wei M M, Yang B J, Liu Y Y, et al. Research Progress and Prospect on Erosion-corrosion of Cu-Ni Alloy Pipe in Seawater [J]. Journal of Chinese Society for Corrosion and Protection, 2016, 36(6): 513-521.
[15]杨朝晖, 王港, 李健, 等. 机场钢质输油管道的腐蚀测量与分析[J]. 钢铁研究学报, 2016, 28(2): 75-80.
Yang Z H, Wang G, Li J, et al. Corrosion detection and analysis of airport oil steel pipeline [J]. Journal of Iron and Steel Research, 2016, 28(2): 75-80.
[16]Nguyen T T, Kikura H, Murakawa H, et al. Measu-rement of bubbly two-phase flow in vertical pipe using multiwave ultrasonic pulsed Doppler method and wire mesh tomography [J]. Energy Procedia, 2015, 71: 337-351.
[17]Dong X X, Tan C, Yuan Y, et al. Oil-water two-phase flow velocity measurement with continuous wave ultraso-und Doppler [J]. Chemical Engineering Science, 2015, 135: 155-165.
[18]Wada S, Tezuka K, Treenuson W, et al. Estimating the number of transducers for flow rate measurement using the UVP method downstream of double elbows [J]. Flow Measurement and Instrumentation, 2013, 32: 51-62.
[19]Nnabuifea S G, Pilarioa K E S, Li Y L, et al. Identification of gas-liquid flow regimes using a non-intrusive Doppler ultrasonic sensor and virtual flow regime maps [J]. Flow Measurement and Instrume-ntation, 2019, 68: 1-9.
[20]Wiklund J, Stading M, Tragardh C. Monitoring liquid displacement of model and industrial fluids in pipes by in-line ultrasonic rheometry [J]. J Food Eng, 2010, 99: 330-337.
[21]杨理践, 王健, 高松巍. 管道腐蚀超声波在线测量技术 [J]. 中国测试, 2014, 40(1): 88-92.
Yang L J, Wang J, Gao S W. On-line ultrasonic detecting technology for pipe-line corrosion [J]. China Measurement & Test, 2014, 40(1): 88-92.
[22]汪世栋, 王增辉, 倪明玖. 液态金属中气泡上升的超声波测速实验研究与数值模拟 [J]. 中国科学院大学学报, 2013, 30 (5): 598-602.
Wang S D, Wang Z H, Ni M J. Ultrasonic Doppler experimental research and numerical simulation of single bubble rising in static liquid metal [J]. Journal of University of Chinese Academy of Sciences, 2013, 30 (5): 598-602.
[23]郑国军, 唐志峰, 王友钊, 等. 基于匹配追踪算法的超声导波管道轴向缺陷大小定量分析 [J]. 机械工程学报, 2013, 49 (4): 1-5.
Zheng G J, Tang Z F, Wang Y Z, et al. Evaluation of Pipe Axial Defeat through the Use of Ultrasonic Guided Wave and Matching Pursuit [J]. Journal of Mechanical Engineering, 2013, 49 (4): 1-5.
[24]Wada S, Tezuka K, Treenuson W, et al. Study on the Optimal Number of Transducers for Pipe Flow Rate Measurement Downstream of a Single Elbow Using the Ultrasonic Velocity Profile Method [J]. Science and Technology of Nuclear Installations, 2012, 12:1-12.
[25]Treenuson W, Tsuzuki N, Kikura H, et al. Accurate flowrate measurement on double bent pipe using ultrasonic velocity profile method [J]. JSEM, 2013, 13 (2): 200-211.
[26]Ihara T, Kikura H, Takeda Y. Ultrasonic velocity pro-filer for very low velocity field [J]. Flow Measurement and Instrumentation, 2013, 34: 127-133.
[27]Franke S, Lieske H, Fischer A, et al. Two-dimensional ultrasound Doppler velocimeter for flow mapping of unsteady liquid metal flows [J]. Ultrasonics, 2013, 53: 691-700.
[28]Tsukada K, Kikura H. Study on Velocity Profile Mea-surement of Saturated Jet Flow by Air-coupled Ultras-ound [J]. Energy Procedia, 2017, 131: 436-443.
[29]Nguyen T T, Tsuzuki N, Murakawa H, et al. Measurement of the condensation rate of vapor bubbles rising upward in subcooled water by using two ultrasonic frequencies [J]. International Journal of Heat and Mass Transfer, 2016, 99: 159-169.
[30]Wongsaroj W, Hamdani A, Thongun N, et al. Ext-ended Short-Time Fourier Transform for Ultrasonic Velocity Profiler on Two-Phase Bubbly Flow Using a Single Resonant Frequency [J]. Applied Sciences, 2019, 50(9): 1-21.
[31]Furuichi N. Fundamental uncertainty analysis of flow rate measurement using the ultrasonic Doppler velocity profile method [J]. Flow Measurement and Instrume-ntation, 2013, 33: 202-211.
[32]Wada S, Furuichi N. Influence of obstacle plates on flowrate measurement uncertainty based on ultrasonic Doppler velocity profile method [J]. Flow Measurement and Instrumentation, 2016, 48: 81-89.
[33]Tezuka K, Mori M, SuzukI T, et al. Calibration tests of pulse-Doppler flow meter at national standard loops [J]. Flow Measurement and Instrumentation, 2008, 19: 181-187.
[34]Inoue Y, Kikura H, Murakawa H, et al. A Study of Ul-trasonic Propagation for Ultrasonic Flow Rate Measurem-ent [J]. Flow Measurement and Instrumentation, 2008, 19: 223-232.
[35]王兴国, 张路鑫, 尧亮富, 等. 管道内流体流量的超声多普勒测量 [J]. 电子测量与仪器学报, 2019, 33 (10): 96-103.
Wang X G, Zhang L X, Yao L F, et al. Measurement of pipeline flow using ultrasonic Doppler method [J]. Journal of Electronic Measurement and Instrumentation, 2019, 33 (10): 96-103. |
|
|
|