|
|
Evaluation and Expression of Measurement Uncertainty ofVoltage Standing Wave Ratio |
GAO Shen-xiang,XIA Wei,GU Wei-hong,BAI Yong-bin |
China Satellite Maritime Tracking and Control Department, Jiangyin, Jiangsu 214431, China |
|
|
Abstract The voltage standing wave ratio (VSWR) is a traditional parameter that characterizes the reflection characteristics in the radio field. There are still application scenarios. However, the reports on the measurement uncertainty of VSWR in some laboratories are not perfect. The evaluation results of VSWRs measurement uncertainty by GUM method of linear and nonlinear measurement model are compared with the results of Monte Carlo method (MCM).A quick GUM method is introduced which can replace MCM and be extended to any one variable measurement model under the common conditions.
|
Received: 20 March 2020
Published: 06 December 2021
|
|
|
|
|
[1]王志田. 无线电电子学计量 [M]. 北京: 原子能出版社, 2002.
[2]JJF 1059.1—2012测量不确定度的评定与表示[S].
[3]刘园园, 杨建, 赵希勇, 等. GUM法和MCM法评定测量不确定度对比分析 [J]. 计量学报, 2018, 39 (1): 135-139.
Liu Y Y, Yang J, Zhao X Y, et al. Comparative Analysis of Uncertainty Measurement Evaluation with GUM and MCM [J]. Acta Metrologica Sinica, 2018, 39 (1): 135-139.
[4]程银宝, 陈晓怀, 王中宇, 等. CMM形状测量任务的不确定度分析与评定 [J]. 计量学报, 2020, 41 (2): 134-138.
Cheng Y B, Chen X H, Wang Z Y, et al. Uncertainty Analysis and Evaluation of Form Measurement Task for CMM [J]. Acta Metrologica Sinica, 2020, 41(2): 134-138.
[5]同济大学数学教研室. 高等数学 [M]. 3版. 北京:高等教育出版社, 1988.
[6]盛骤, 谢式千, 潘承毅. 概率论与数理统计 [M]. 北京:高等教育出版社, 1989.
[7]江文松, 王中宇, 罗哉, 等. 基于蒙特卡罗法的冲击力溯源系统不确定度评定[J]. 计量学报, 2020, 41 (4): 448-455.
Jiang W S, Wang Z Y, Luo Z, et al. Uncertainty Evaluation on the Traceable Measurement System of the Impact Force Based on a Monte Carlo Method[J]. Acta Metrologica Sinica, 2020, 41 (4): 448-455.
[7]宋君, 常丽娟, 张富丽, 等. 采用蒙特卡洛法评定转基因水稻样品中NOS终止子的测量不确定度 [J]. 计量学报, 2019, 40 (1): 164-171.
Song J, Chang L J, Zhang F L, et al. Measurement Uncertainty in NOS terminator from Genetically Modified Rice Estimated by Monte Carlo Method [J]. Acta Metrologica Sinica, 2019, 40 (1): 164-171.
[8]方兴华, 宋明顺, 顾龙芳, 等. 基于自适应蒙特卡罗方法的测量不确定度评定 [J]. 计量学报, 2016, 37 (4): 452-456.
Fang X H, Song M S,Gu L F, et al. Application of Adaptive Monte Carlo Method on Measurement Uncertainty Evaluation [J]. Acta Metrologica Sinica, 2016, 37 (4): 452-456.
[9]JJF 1059.2—2012用蒙特卡洛法评定测量不确定度[S].
[10]余清华, 邱斌, 高申翔, 等. 失配误差的蒙特卡洛分析 [J]. 计量学报, 2015, 36 (1): 92-96.
Yu Q H, Qiu B, Gao S X, et al. Monte Carlo Analyze of Mismatch Error [J]. Acta Metrologica Sinica, 2015, 36 (1): 92-96.
[11]高申翔, 霍莹, 崔豹, 等. 噪声传递中失配误差的再讨论及解决方案 [J]. 计量学报, 2016, 37 (5): 540-543.
Gao S X, Huo Y, Cui B, et al. Re-discussion and Solution for Mismatch in Noise Quantity Transfer [J]. Acta Metrologica Sinica, 2016, 37 (5): 540-543.
[12]叶德培. 测量不确定度 [M]. 北京: 国防工业出版社, 1996. |
|
|
|