|
|
Research on Calibration Method of X-ray Environmental Radiation Monitoring Instrument |
SONG Fei1,2,ZHAO Rui2,DING Wei-cheng1,ZHANG De-liang2,YANG Yang2,WU Jin-jie2 |
1. College of Nuclear Technology and Automation Engineering,Chengdu University of Technology, Chengdu, Sichuan 610059, China
2. National Institute of Metrology, Beijing 100029, China |
|
|
Abstract As a measuring instrument for weak radioactivity monitoring, the traceability of the environmental monitoring is an urgent problem to be solved. Because the environmental radiation dose rate is low and the ionization signal is weak, it is usually measured by large volume ionization chamber or charging pressure ionization chamber. On the based of primary standards of 60~250kV X-ray air kerma and absolute measurement of the air kerma under the narrow spectrum series X-ray radiation quality, radiation environmental monitoring instruments were calibratied by successive substitution method. The uncertainty of measurement measurement result is better than 5.6%(k=2). It realize the traceability of environmental level X-ray air kerma measurement, and provide metrological support for the performance evaluation of environmental radiation monitoring instruments at low dose rate level.
|
Received: 22 February 2021
Published: 24 September 2021
|
|
|
|
|
[1]姚叶豹, 马得勋, 殷爱民, 等. 低剂量电离辐射对人体健康影响的研究现状[J]. 辐射防护通讯, 2020, 40(3): 1-8.
Yao Y B, Ma D X, Yin A M, et al. Research Status of the effect of low dose ionizing radiation on human health[J]. Radiation Protection Communications, 2020, 40(3): 1-8.
[2]彭峰莉. 辐射环境监测在辐射环境影响评价中的应用分析[J]. 环境与发展, 2019, 31(11): 130-131.
Peng F L. Analysis of the application of Radiation Environmental Monitoring in radiation environmental impact assessment[J]. Environment and development, 2019, 31(11): 130-131.
[3]李多宏, 王铁健, 潘玉婷, 等. 伴生放射性矿中放射性核素检测实验室比对[J]. 计量学报, 2020, 41(12): 1559-1564.
Li D H, Wang T J, Pan Y T, et al. Comparison of radionuclide detection laboratories in associated radioactive ores[J]. Acta Metrology Sinica, 2020, 41(12): 1559-1564.
[4]喻拓夏, 奚清, 杨丹. 基于射线照相的X射线衰减系数测量方法研究[J]. 计量学报, 2020, 41(11): 1431-1435.
Yu T X, Xi Q, Yang D. Study on measurement method of X-ray attenuation Coefficient based on radiography[J]. Acta Metrology Sinica, 2020, 41(11): 1431-1435.
[5]刘怡. 高气压电离室能量响应的模拟计算[J]. 辐射防护通讯, 2009, 29(1): 34-36.
Liu Y. Simulation of energy response of high pressure Ionization Chamber[J]. Radiation Protection Communications, 2009, 29(1): 34-36.
[6]李锦玉, 李桂珍, 刘天恩, 等. 用于环境辐射剂量测量的圆柱形高气压电离室对光子能量响应的测定[J]. 辐射防护, 1983,(6): 430-434.
Li J Y, Li G Z, Liu T S, et al. Measurement of Photon energy response in a cylindrical high pressure Ionization Chamber for Environmental Radiation Dosimetry[J]. Radiation Protection, 1983,(6): 430-434.
[7]郑国栋, 宋建锋, 杨维耿. 环境γ辐射连续监测系统数据分析及探讨[J]. 中国辐射卫生, 2013, 22(1): 85-87.
Zheng G D, Song J F, Yang W G. Data Analysis and discussion of environmental radiation continuous monitoring system[J]. Chinese Radiation Hygiene, 2013, 22(1): 85-87.
[8]曹鹏涛, 孙建明. 基于RSdetection高气压电离室户外数采终端设计研究[J]. 科技风, 2019(32): 161-162.
Cao P T, Sun J M. Design and research of outdoor data acquisition terminal based on Rsdetection High Pressure Ionization Chamber[J]. Science and technology, 2019(32): 161-162.
[9]李云飞. 中能X射线参考辐射场及量值传递的研究[D]. 石家庄: 河北科技大学, 2019.
[10]张德亮. 重过滤窄谱X射线空气比释动能的测量与研究[D]. 成都: 成都理工大学, 2019.
[11]张德亮, 吴金杰, 杜海燕, 等. 低空气比释动能率X射线参考辐射质的建立[J]. 核电子学与探测技术, 2018, 38(2): 217-222.
Zhang D L, Wu J J, Du H Y, et al. Establishment of x-ray reference radiation with low air kerma rates[J]. Nuclear Electronics and Detection Technology, 2018, 38(2): 217-222.
[12]Dombrowski H, Neumaier S. Traceability of the PTB low-dose rate photon calibration facility[J]. Radiation Protection Dosimetry, 2010, 140(3): 223.
[13]Neumaier S, Arnold D, Bohm J, et al. The PTB underground laboratory for dosimetry and spectrometry[J]. Applied Radiation & Isotopes, 2000, 53(1): 173-178.
[14]Neumaier S, Wojcik M, Dombrowski H, et al. Improvements of a low-level gamma-ray spectrometry system at the underground laboratory “UDO”[J]. Applied Radiation & Isotopes Including Data Instrumentation & Methods for Use in Agriculture Industry & Medicine, 2009, 67(5): 726-7305.
[15]刘哲. 环境辐射监测仪表校准关键技术研究[D]. 成都:成都理工大学, 2020.
[16]文玉琴, 赵瑞, 吴金杰, 等. MC模拟高纯锗探测器准直器对X射线能谱测量的影响[J]. 计量学报, 2021, 42(2): 245-249.
Wen Y Q, Zhao R, Wu J J, et al. Effect of MC simulated high-purity Germanium detector collimator on x-ray energy spectrum measurement[J]. Acta Metrology Sinica, 2021, 42(2): 245-249.
[17]赵瑞. 环境水平X射线周围剂量当量测量与研究[D]. 成都: 成都理工大学, 2018.
[18]余继利. X射线石墨空腔电离室修正因子研究[D]. 成都: 成都理工大学, 2017.
[19]王继. 钨靶—钼过滤X射线空气比释动能测量方法研究[D]. 石家庄: 河北科技大学, 2019.
[20]吕雅竹, 赵瑞, 李德红, 等. X射线剂量当量仪校准因子不确定度评估[J]. 计量学报, 2020, 41(9): 1133-1137.
Lu Y Z, Zhao R, Li D H, et al. Evaluation of uncertainty for calibration factor of x-ray dose equivalent instrument[J]. Acta Metrology Sinica, 2020, 41(9): 1133-1137.
[21]李若楠. 圆柱型自由空气电离室的设计与研究[D]. 石家庄: 河北科技大学, 2019. |
|
|
|