|
|
Internal Groove Defect Detection Method of Brake Master Cylinder Based on FCOS Neural Network |
WANG Zhi-wei1,GUO Bin1,HU Xiao-feng1,2,LUO Zai1,DUAN Lin-mao3 |
1. College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou,Zhejiang 310018, China
2. Zhejiang Key Laboratory of Advanced Manufacturing Technology, Hangzhou,Zhejiang 310058, China
3. Hangzhou Wolei Intelligent Technology Co. Ltd, Hangzhou,Zhejiang 310018, China |
|
|
Abstract Aiming at the difficulties of complicated interference factors and low detection accuracy in the detection of groove defects in the main cylinder, a detection algorithm for groove defects in the main cylinder based on full convolution single stage neural network (FCOS) was proposed. FPN network was used for feature extraction and pixel by pixel prediction, and the predicted results were classified to realize automatic detection of groove defects. The experimental results show that the mAP values of FCOS network in detecting the sand hole, scratch and vibration pattern in the inner groove of the main cylinder are 85.2%, 87.5% and 90.1%,and the detection accuracy is 0.98, 0.89 and 0.95. Finally, the experimental results were compared with those of the Mask R-CNN network and Faster R-CNN network. FCOS network had higher accuracy, significantly shortened learning time and satisfied real-time detection requirements.
|
Received: 26 April 2020
Published: 24 September 2021
|
|
|
|
|
[1]张晋, 孔祥东, 姚静, 等. 汽车防抱死制动系统液压控制单元的建模与仿真[J]. 中国机械工程, 2016, 27(21): 2967-2974.
Zhang J, Kong X D, Yao J, et al. Modeling and simulation of ABS HCU[J]. China Mechanical Engineering, 2016, 27(21): 2967-2974.
[2]胡晓峰,江文松,郭斌, 等. 串联式制动阀静特性仿真及测试方法研究[J]. 计量学报, 2019, 40(6): 1088-1095.
Hu X F, Jiang W S, Guo B, et al. Study On the Simulation and Test Method of Static Characteristics for Series Brake Valve[J]. Acta Metrologica Sinica, 2019, 40(6): 1088-1095.
[3]高俊鹏, 姜涛, 张桂林, 等. 汽车制动主缸补偿孔形位尺寸检测双远心光学系统研究[J]. 计量学报, 2017, 38(3): 262-266.
Gao J P, Jiang T, Zhang G L, et al.Research on Double Telecentric Optical System for the Form and Position Detection of Automobile Brake Cylinder Comoensation Hole[J]. Acta Metrologica Sinica, 2017, 38(3): 262-266.
[4]郭斌, 华士丹, 范伟军, 等. 柱塞主缸密封凹槽表面缺陷检测系统[J]. 中国测试, 2018, 44(8): 76-81.
Guo B, Hua S D, Fan W J, et al.Surface Defect Detection System for Sealing Groove of Plunger Main Cylinder[J]. China Test, 2018, 44(8): 76-81.
[5]石韵昭, 倪军, 范晟华, 等. 基于机器视觉的双工位载带检测系统研究[J]. 计量学报, 2019, 40(2): 196-200.
Shi Y Z, Ni J, Fan S H, et al.Research on dual station carrier-stripetection system based on machine vision[J]. Acta Metrologica Sinica, 2019, 40(2): 196-200.
[6]程瑶, 赵雷, 成珊, 等. 基于机器视觉的车距检测系统设计[J]. 计量学报, 2020, 41(1): 11-15.
Cheng Y, Zhao L, Cheng S, et al.Design of vehicledistanced-这个-是为了调版加的etectionsystem based on machine vision[J]. Acta Metrologica Sinica, 2020, 41(1): 11-15.
[7]晏世武, 罗金良, 严庆. 基于改进Yolov3的目标检测的研究[J]. 智能计算机与应用, 2019, 9(6): 312-315.
Yan S W, Luo J L, Yan Q. Research on target detection based on improved Yolov3[J]. Intelligent computers and applications, 2019, 9(6): 312-315.
[8]李小宁, 雷涛, 钟剑丹, 等. 基于改进SSD的车辆小目标检测方法[J]. 应用光学, 2020, 41(1): 150-155.
Li X N, Lei T, Zhong J D, et al.Vehicle small target detection method based on improved SSD [J]. Applied optics, 2020, 41(1): 150-155.
[9]Ahmed Selsayed, Hala Mebeid, Mohamed Roushdy. Robust palm and knuckle ROI extraction in unconstrained environment[J]. Pattern Analysis and Applications, 2019, 22(4), 1537-1559.
[10]Bleasby J. ROI analysis key before new tech investment[J]. Daily Commercial News, 2019, 92(211): 1-2.
[11]侯志强, 刘晓义, 余旺盛, 等. 基于双阈值-非极大值抑制的Faster R-CNN改进算法[J]. 光电工程, 2019, 46(12): 82-92.
Hou Z Q, Liu X Y, Yu W S, et al.Improved Faster R-CNN Algorithm Based on Double Threshold-Non-Maximum Suppression[J]. Optoelectronic Component, 2019, 46(12): 82-92.
[12]刘庆民, 张蕾, 吴立群, 等. 基于机器视觉的非均匀分布点圆度误差评定[J]. 计量学报, 2016, 37(6): 567-570.
Liu Q M, Zhang L, Wu L Q, et al.Evaluation of roundness error of inhomogeneous distribution points based on machine vision[J]. Acta Metrologica Sinica, 2016, 37(6): 567-570.
[13]李国友, 纪执安, 张凤煦. 融合多层深度特征的核相关滤波跟踪算法[J]. 高技术通讯, 2020, 30(2): 126-133.
Li G Y, Ji Z A, Zhang F X. A kernel correlation filtertracking algorithm based on multi-layer depthfeature[J]. High technology communication, 2020, 30(2): 126-133.
[14]李良福, 宋睿, 冯建云, 等. 基于深度降噪自编码器的多特征目标融合跟踪算法[J]. 光电子·激光, 2020, 31(2): 175-186.
Li L F, Song R, Feng J Y, et al.A Multi-feature target fusion tracking algorithm based on deep de-noising self-encoder[J]. Photoelectron lase, 2020, 31(2): 175-186.
[15]徐亮, 符冉迪, 金炜, 等. 基于多尺度特征损失函数的图像超分辨率重建[J]. 光电工程, 2019, 46(11): 3-11.
Xu L, Fu R D, Jin W, et al.Image super resolution reconstruction based on multi-scale feature loss function[J]. OptoelectronicComponent, 2019, 46(11): 3-11.
[16]郭保苏, 吴文文, 付强, 等. 基于支持向量机分类策略的多晶硅电池片色差检测[J]. 计量学报, 2019, 40(6): 1013-1019.
Guo B S, Wu W W, Fu Q, et al.Face Chromatic aberration detection of polysilicon cells based on support vector machine classification strategy[J]. Acta Metrologica Sinica, 2019, 40(6): 1013-1019.
[17]赵一中, 刘文波. 基于深度信念网络的非限制性人脸识别算法研究[J]. 计量学报, 2017, 38(1): 65-68.
Zhao Y Z, Liu W B. Research on unrestricted face recognition algorithm based on deep belief network[J]. Acta Metrologica Sinica, 2017, 38(1): 65-68. |
|
|
|